1
|
Choudhary R, Kaushik R, Chawla P, Manna S. Exploring the extraction, functional properties, and industrial applications of papain from Carica papaya. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1533-1545. [PMID: 39077990 DOI: 10.1002/jsfa.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand. The extraction of papain from the Carica papaya plant offers various advantages such as cost-effectiveness, biodegradability, safety, and the ability to withstand a wide range of pH and temperature conditions. Key findings reveal that non-conventional papain extraction techniques offer significant advantages in terms of efficiency, product quality, and environmental sustainability. Furthermore, papain treatment enhances the value of final products due to its anti-bacterial, anti-oxidant, and anti-obesity properties. The ability of papain to hydrolyze a wide range of proteins across various conditions makes it a suitable protease enzyme. While the study emphasizes the advantages of papain, the study also acknowledges limitations such as the continuous research and development to optimize extraction processes which will help unlock papain's potential and meet the growing demand. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rajni Choudhary
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Suvendu Manna
- Sustainibility Cluster, School of Advance Engineering, UPES, Dehradun, India
| |
Collapse
|
2
|
Nilsson F, Elf P, Capezza A, Wei X, Tsegaye B, Polisetti V, Svagan AJ, Hedenqvist M. Environmental concerns on water-soluble and biodegradable plastics and their applications - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177926. [PMID: 39693661 DOI: 10.1016/j.scitotenv.2024.177926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Water-soluble polymers are materials rapidly growing in volume and in number of materials and applications. Examples include synthetic plastics such as polyacrylamide, polyacrylic acid, polyethylene glycol, polyethylene oxide and polyvinyl alcohol, with applications ranging from cosmetics and paints to water purification, pharmaceutics and food packaging. Despite their abundance, their environmental concerns (e.g., bioaccumulation, toxicity, and persistence) are still not sufficiently assessed, especially since water soluble plastics are often not biodegradable, due to their chemical structure. This review aims to overview the most important water-soluble and biodegradable polymers, their applications, and their environmental impact. Degradation products from water-insoluble polymers designed for biodegradation can also be water soluble. Most water-soluble plastics are not immediately harmful for humans and the environment, but the degradation products are sometimes more hazardous, e.g. for polyacrylamide. An increased use of water-soluble plastics could also introduce unanticipated environmental hazards. Therefore, excessive use of water-soluble plastics in applications where they can enter the environment should be discouraged. Often the plastics can be omitted or replaced by natural polymers with lower risks. It is recommended to include non-biodegradable water-soluble plastics in regulations for microplastics, to make risk assessments for different water-soluble plastics and to develop labels for flushable materials.
Collapse
Affiliation(s)
- Fritjof Nilsson
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FSCN Research Centre, Mid Sweden University, 85170 Sundsvall, Sweden.
| | - Patric Elf
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Antonio Capezza
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xinfeng Wei
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bahiru Tsegaye
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Veerababu Polisetti
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mikael Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Bekavac N, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J, Jurinjak Tušek A, Šalić A. Advancements in Aqueous Two-Phase Systems for Enzyme Extraction, Purification, and Biotransformation. Molecules 2024; 29:3776. [PMID: 39202854 PMCID: PMC11357509 DOI: 10.3390/molecules29163776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, the increasing need for energy conservation and environmental protection has driven industries to explore more efficient and sustainable processes. Liquid-liquid extraction (LLE) is a common method used in various sectors for separating components of liquid mixtures. However, the traditional use of toxic solvents poses significant health and environmental risks, prompting the shift toward green solvents. This review deals with the principles, applications, and advantages of aqueous two-phase systems (ATPS) as an alternative to conventional LLE. ATPS, which typically utilize water and nontoxic components, offer significant benefits such as high purity and single-step biomolecule extraction. This paper explores the thermodynamic principles of ATPS, factors influencing enzyme partitioning, and recent advancements in the field. Specific emphasis is placed on the use of ATPS for enzyme extraction, showcasing its potential in improving yields and purity while minimizing environmental impact. The review also highlights the role of ionic liquids and deep eutectic solvents in enhancing the efficiency of ATPS, making them viable for industrial applications. The discussion extends to the challenges of integrating ATPS into biotransformation processes, including enzyme stability and process optimization. Through comprehensive analysis, this paper aims to provide insights into the future prospects of ATPS in sustainable industrial practices and biotechnological applications.
Collapse
Affiliation(s)
- Nikša Bekavac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
5
|
Albogami A, Naguib DM. Agricultural wastes: a new promising source for phenylalanine ammonia-lyase as anticancer agent. 3 Biotech 2024; 14:22. [PMID: 38156037 PMCID: PMC10751285 DOI: 10.1007/s13205-023-03871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023] Open
Abstract
The present study aims to investigate the physicochemical characteristics of phenylalanine ammonia-lyase (PAL) extracted from agricultural waste and its potential use as an anticancer agent in comparison to microbial PAL. We extracted and partially purified PAL from agricultural waste sources. We assessed the temperature and pH range of PAL and determined enzyme kinetics parameters including Michaelis constants (Km), maximum velocity (Vmax), and specificity constant values (Vmax/Km). Additionally, we examined the effects of different storage temperatures on PAL activity. In our analysis, we compared the efficacy of agricultural waste-derived PAL with PAL from Rhodotorula glutinis. The results demonstrated that PAL extracted from agricultural waste exhibited significantly higher specific activity (Vmax/Km) compared to its microbial counterpart. The agricultural waste-derived PAL displayed a stronger affinity for phenylalanine, as indicated by a lower Km value than the microbial PAL did. Furthermore, PAL from agricultural waste maintained activity across a broader temperature and pH range (15-75 °C, pH 5-11), in contrast to microbial PAL (20-60 °C, pH 5.5-10). Importantly, the PAL derived from agricultural waste exhibited superior stability, retaining over 90% of its activity after 6 months of storage at room temperature (25 °C), whereas microbial PAL lost more than 70% of its activity under similar storage conditions. In anticancer experiments against various cancer cell lines, agricultural waste-derived PAL demonstrated greater anticancer activity compared to microbial PAL. These findings suggest that PAL sourced from agricultural waste has the potential to be a safe and effective natural anticancer agent.
Collapse
Affiliation(s)
- Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University (BU), Alaqiq, Saudi Arabia
| | - Deyala M. Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University (BU), Al-Mikhwah, Saudi Arabia
| |
Collapse
|
6
|
Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We " AMES"? Antioxidants (Basel) 2022; 11:antiox11061197. [PMID: 35740094 PMCID: PMC9230180 DOI: 10.3390/antiox11061197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Several pharmaceutical companies are nowadays considering the use of agri-food waste as alternative raw material for the extraction of bioactive compounds to include in nutraceuticals and food supplements. This recycling activity is encountering the support of authorities, which are alarmed by air, soil and water pollution generated by agricultural waste disposal. Waste reuse has several economic advantages: (i) its low cost; (ii) its abundance; (iii) the high content of bioactive molecule (antioxidants, minerals, fibers, fatty acids); as well as (iv) the financial support received by governments eager to promote eco-compatible and pollution-reducing practices. While nutraceuticals produced from biowaste are becoming popular, products that have been risk-assessed in terms of safety are quite rare. This despite waste biomass, in virtue of its chemical complexity, could, in many cases, mine the overall safety of the final nutraceutical product. In this review, we summarize the scientific results published on genotoxicity risk-assessment of bioactive compounds extracted from agricultural waste. The review depicts a scenario where the risk-assessment of biowaste derived products is still scarcely diffuse, but when available, it confirms the safety of these products, and lets us envisage their future inclusion in the list of botanicals allowed for formulation intended for human consumption.
Collapse
|