1
|
Silva A, Silva V, Gomes JP, Coelho A, Batista R, Saraiva C, Esteves A, Martins Â, Contente D, Diaz-Formoso L, Cintas LM, Igrejas G, Borges V, Poeta P. Listeria monocytogenes from Food Products and Food Associated Environments: Antimicrobial Resistance, Genetic Clustering and Biofilm Insights. Antibiotics (Basel) 2024; 13:447. [PMID: 38786175 PMCID: PMC11118052 DOI: 10.3390/antibiotics13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Listeria monocytogenes, a foodborne pathogen, exhibits high adaptability to adverse environmental conditions and is common in the food industry, especially in ready-to-eat foods. L. monocytogenes strains pose food safety challenges due to their ability to form biofilms, increased resistance to disinfectants, and long-term persistence in the environment. The aim of this study was to evaluate the presence and genetic diversity of L. monocytogenes in food and related environmental products collected from 2014 to 2022 and assess antibiotic susceptibility and biofilm formation abilities. L. monocytogenes was identified in 13 out of the 227 (6%) of samples, 7 from food products (meat preparation, cheeses, and raw milk) and 6 from food-processing environments (slaughterhouse-floor and catering establishments). All isolates exhibited high biofilm-forming capacity and antibiotic susceptibility testing showed resistance to several classes of antibiotics, especially trimethoprim-sulfamethoxazole and erythromycin. Genotyping and core-genome clustering identified eight sequence types and a cluster of three very closely related ST3 isolates (all from food), suggesting a common contamination source. Whole-genome sequencing (WGS) analysis revealed resistance genes conferring resistance to fosfomycin (fosX), lincosamides (lin), fluoroquinolones (norB), and tetracycline (tetM). In addition, the qacJ gene was also detected, conferring resistance to disinfecting agents and antiseptics. Virulence gene profiling revealed the presence of 92 associated genes associated with pathogenicity, adherence, and persistence. These findings underscore the presence of L. monocytogenes strains in food products and food-associated environments, demonstrating a high virulence of these strains associated with resistance genes to antibiotics, but also to disinfectants and antiseptics. Moreover, they emphasize the need for continuous surveillance, effective risk assessment, and rigorous control measures to minimize the public health risks associated to severe infections, particularly listeriosis outbreaks. A better understanding of the complex dynamics of pathogens in food products and their associated environments can help improve overall food safety and develop more effective strategies to prevent severe health consequences and economic losses.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Anabela Coelho
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Batista
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Cristina Saraiva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Alexandra Esteves
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ângela Martins
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Lara Diaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Lagarde J, Feurer C, Denis M, Douarre PE, Piveteau P, Roussel S. Listeria monocytogenes prevalence and genomic diversity along the pig and pork production chain. Food Microbiol 2024; 119:104430. [PMID: 38225039 DOI: 10.1016/j.fm.2023.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 01/17/2024]
Abstract
The facultative intracellular bacterium Listeria monocytogenes (L. monocytogenes) is the causative agent of listeriosis, a severe invasive illness. This ubiquitous species is widely distributed in the environment, but infection occurs almost exclusively through ingestion of contaminated food. The pork production sector has been heavily affected by a series of L. monocytogenes-related foodborne outbreaks in the past around the world. Ready-to-eat (RTE) pork products represent one of the main food sources for strong-evidence listeriosis outbreaks. This pathogen is known to be present throughout the entire pig and pork production chain. Some studies hypothesized that the main source of contamination in final pork products was either living pigs or the food-processing environment. A detailed genomic picture of L. monocytogenes can provide a renewed understanding of the routes of contamination from pig farms to the final products. This review provides an overview of the prevalence, the genomic diversity and the genetic background linked to virulence of L. monocytogenes along the entire pig and pork production chain, from farm to fork.
Collapse
Affiliation(s)
- Jean Lagarde
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France; INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), 17 avenue de Cucillé, 35000, Rennes, France
| | - Carole Feurer
- IFIP, The French Pig and Pork Institute, Department of Fresh and Processed Meat, La Motte au Vicomte, 35650, Le Rheu, France
| | - Martine Denis
- ANSES, Unit of Hygiene and Quality of Poultry and Pork Products (UHQPAP), Ploufragan-Plouzané-Niort Laboratory, 31 rue des fusillés, 22440, Ploufragan, France
| | - Pierre-Emmanuel Douarre
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France
| | - Pascal Piveteau
- INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), 17 avenue de Cucillé, 35000, Rennes, France
| | - Sophie Roussel
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
3
|
Voronina OL, Kunda MS, Ryzhova NN, Aksenova EI, Kustova MA, Karpova TI, Melkumyan AR, Klimova EA, Gruzdeva OA, Tartakovsky IS. Listeria monocytogenes ST37 Distribution in the Moscow Region and Properties of Clinical and Foodborne Isolates. Life (Basel) 2023; 13:2167. [PMID: 38004307 PMCID: PMC10672678 DOI: 10.3390/life13112167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Listerias of the phylogenetic lineage II (PLII) are common in the European environment and are hypovirulent. Despite this, they caused more than a third of the sporadic cases of listeriosis and multi-country foodborne outbreaks. L. monocytogenes ST37 is one of them. During the COVID-19 pandemic, ST37 appeared in clinical cases and ranked second in occurrence among food isolates in the Moscow region. The aim of this study was to describe the genomic features of ST37 isolates from different sources. All clinical cases of ST37 were in the cohort of male patients (age, 48-81 years) with meningitis-septicemia manifestation and COVID-19 or Influenza in the anamnesis. The core genomes of the fish isolates were closely related. The clinical and meat isolates revealed a large diversity. Prophages (2-4/genome) were the source of the unique genes. Two clinical isolates displayed pseudolysogeny, and excided prophages were A006-like. In the absence of plasmids, the assortment of virulence factors and resistance determinants in the chromosome corresponded to the hypovirulent characteristics. However, all clinical isolates caused severe disease, with deaths in four cases. Thus, these studies allow us to speculate that a previous viral infection increases human susceptibility to listeriosis.
Collapse
Affiliation(s)
- Olga L. Voronina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (M.S.K.); (N.N.R.); (E.I.A.); (M.A.K.); (T.I.K.); (I.S.T.)
| | - Marina S. Kunda
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (M.S.K.); (N.N.R.); (E.I.A.); (M.A.K.); (T.I.K.); (I.S.T.)
| | - Natalia N. Ryzhova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (M.S.K.); (N.N.R.); (E.I.A.); (M.A.K.); (T.I.K.); (I.S.T.)
| | - Ekaterina I. Aksenova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (M.S.K.); (N.N.R.); (E.I.A.); (M.A.K.); (T.I.K.); (I.S.T.)
| | - Margarita A. Kustova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (M.S.K.); (N.N.R.); (E.I.A.); (M.A.K.); (T.I.K.); (I.S.T.)
| | - Tatiana I. Karpova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (M.S.K.); (N.N.R.); (E.I.A.); (M.A.K.); (T.I.K.); (I.S.T.)
| | - Alina R. Melkumyan
- F.I. Inosemtsev City Clinical Hospital, Fortunatovskaya Str., 1, 105187 Moscow, Russia;
| | - Elena A. Klimova
- Department of Infectious Diseases and Epidemiology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Delegatskaya Str., 20, Building 1, 127473 Moscow, Russia;
| | - Olga A. Gruzdeva
- Federal State Budgetary Educational Institution of Further Professional Education Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Barrikadnaya Str., 2/1, Building 1, 125993 Moscow, Russia;
| | - Igor S. Tartakovsky
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (M.S.K.); (N.N.R.); (E.I.A.); (M.A.K.); (T.I.K.); (I.S.T.)
| |
Collapse
|
4
|
Voronina OL, Ryzhova NN, Aksenova EI, Kunda MS, Kutuzova AV, Karpova TI, Yushina YK, Tartakovsky IS. Genetic Diversity of Listeria Detected in the Production Environment of Meat Processing. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY : MOLEKULYARNAYA GENETIKA, MIKROBIOLOGIYA I VIRUSOLOGIYA 2023; 38:21-28. [PMID: 37325805 PMCID: PMC10257894 DOI: 10.3103/s0891416823010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
The safety of food production as concerns Listeria is the key to the sanitary wellbeing of manufactured products. Molecular-genetic methods for the analysis of Listeria, including whole-genome sequencing, are effective in monitoring persistent contaminants and in the epidemic investigation of cases of foodborne infections. They have been adopted in the European Union, United States, and Canada. In Russia, multilocus and whole-genome sequencing has proven itself in the analysis of clinical food isolates and Listeria from the environment. The objective of the study was molecular-genetic characterization of Listeria detected in the industrial environment of meat processing. To characterize the Listeria isolates, microbiological methods were used according to GOST (State Standard) 32031-2012, as well as multilocus sequencing, including the analysis of seven housekeeping genes and four virulence genes, as well as whole-genome sequencing. In swabs that were positive for the presence of Listeria spp. taken at two meat-processing plants in Moscow, Listeria monocytogenes constituted 81% and L. welshimeri 19%. The predominant genotype (Sequence Type, ST) of L. monocytogenes was ST8. The variety was supplemented with ST321, ST121, and ST2330 (CC9 (Clonal Complex 9)). L. welshimeri, which prevailed in the second production, was represented by ST1050 and ST2331. The genomic characteristics of L. welshimeri isolates confirmed that they have high adaptive capabilities both as concerns production conditions (including resistance to disinfectants) and the metabolic peculiarities of the gastrointestinal tract of animals. L. monocytogenes CC9 and CC121 are also correlated with food production in other countries. However, L. monocytogenes CC8 and CC321 can cause invasive listeriosis. The concordance in the internalin profile of the ST8 isolates from the industrial environment with the clinical isolates ST8 and ST2096 (CC8) is a cause for concern. The study showed the effectiveness of molecular-genetic methods in determining the diversity of Listeria detected in the production environment of meat processing, and laid the foundation for monitoring of persistent contaminants.
Collapse
Affiliation(s)
- O. L. Voronina
- Gamaleya Research Institute of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - N. N. Ryzhova
- Gamaleya Research Institute of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - E. I. Aksenova
- Gamaleya Research Institute of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - M. S. Kunda
- Gamaleya Research Institute of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - A. V. Kutuzova
- Gamaleya Research Institute of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - T. I. Karpova
- Gamaleya Research Institute of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Yu. K. Yushina
- Gorbatov Federal Research Center for Food Systems, 109316 Moscow, Russia
| | - I. S. Tartakovsky
- Gamaleya Research Institute of Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
5
|
Ermolaeva SA, Karpova T, Andriyanov P, Zhurilov P, Voronina OL, Ryzhova N, Aksenova E, Kunda M, Liskova E, Gruzdeva O, Klimova E, Posukhovsky E, Karetkina G, Melkumyan A, Orlova O, Burmistrova E, Pronina T, Tartakovsky I. Distribution of antimicrobial resistance among clinical and food Listeria monocytogenes isolated in Moscow in 2019–2021. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.2.156-164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective.
To determine the current state-of-art of acquired resistance to antimicrobial drugs among L. monocytogenes strains associated with listeriosis in humans and food contamination in Moscow.
Materials and Methods.
We used 39 L. monocytogenes strains isolated in Moscow in 2019–2021 from clinical material (n = 24) and food (n = 15). Resistance to 12 antibiotics of the first and second lines of defense was studied using disk-diffusion method. The parameters recommended for L. monocytogenes were used to interpret the results; in the absence of recommendations for L. monocytogenes, the criteria for Staphylococcus aureus and/or Enterococcus spp. were used.
Results.
All strains were susceptible to ampicillin, benzylpenicillin, erythromycin, vancomycin, imipenem, linezolid, and the amoxicillin/clavulanic acid. Resistance was observed to gentamicin (23%) as well as to meropenem, trimethoprim/sulfamethoxazole and ciprofloxacin (5%, 74% and 28% of strains, respectively). A total of 15 strains with multiple antibiotic resistance were identified (13 and 2 isolates were resistant to three and four antibiotics, respectively). Simultaneous resistance to trimethoprim/sulfamethoxazole, ciprofloxacin and levofloxacin was observed in 9 strains, 6 strains were resistant to gentamicin and trimethoprim/sulfamethoxazole, including 3 strains – to gentamicin, trimethoprim/sulfamethoxazole, levofloxacin, and 2 strains – to gentamicin, trimethoprim/sulfamethoxazole, ciprofloxacin. Comparison of the growth inhibition zones by ampicillin and benzylpenicillin in the studied strains with historical data on the strains isolated in Russia in 1950–1980 showed a significant downward shift in the size of growth inhibition zones. Comparison of the distribution of strains with different diameters of growth inhibition zones depending on the source of isolation did not show significant differences between clinical strains and strains of food origin isolated in 2019–2021.
Conclusions.
A wide spread of acquired resistance was shown among L. monocytogenes strains of clinical and food origin isolated in Moscow in 2019–2021. Despite the fact that all strains were susceptible to penicillins, the distribution of growth inhibition zone diameters showed a significant shift towards decreasing sensitivity to ampicillin and benzylpenicillin in strains isolated in 2019–2021 compared with L. monocytogenes strains isolated in Russia before 1980.
Collapse
Affiliation(s)
- Svetlana A. Ermolaeva
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology (Moscow, Russia)
| | - T.I. Karpova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology (Moscow, Russia)
| | - P.A. Andriyanov
- Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology (Nizhny Novgorod, Russia)
| | - P.A. Zhurilov
- Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology (Nizhny Novgorod, Russia)
| | - Olga L. Voronina
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology (Moscow, Russia)
| | - N.N. Ryzhova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology (Moscow, Russia)
| | - E.I. Aksenova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology (Moscow, Russia)
| | - M.S. Kunda
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology (Moscow, Russia)
| | - E.A. Liskova
- Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology (Nizhny Novgorod, Russia)
| | - O.A. Gruzdeva
- Russian Medical Academy of Continuous Professional Education (Moscow, Russia)
| | - E.A. Klimova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry (Moscow, Russia)
| | - E.A. Posukhovsky
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry (Moscow, Russia)
| | - G.N. Karetkina
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry (Moscow, Russia)
| | - A.R. Melkumyan
- City Clinical Hospital named after F.I. Inozemtsev (Moscow, Russia)
| | - O.E. Orlova
- City Clinical Hospital No. 67 named after L.A. Vorokhobov (Moscow, Russia)
| | | | - T.V. Pronina
- City Infectious Clinical Hospital No. 1 (Moscow, Russia)
| | - I.S. Tartakovsky
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology (Moscow, Russia)
| |
Collapse
|