1
|
Lahlou RA, Gonçalves AC, Bounechada M, Nunes AR, Soeiro P, Alves G, Moreno DA, Garcia-Viguera C, Raposo C, Silvestre S, Rodilla JM, Ismael MI, Silva LR. Antioxidant, Phytochemical, and Pharmacological Properties of Algerian Mentha aquatica Extracts. Antioxidants (Basel) 2024; 13:1512. [PMID: 39765840 PMCID: PMC11673699 DOI: 10.3390/antiox13121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Water mint (Mentha aquatica) is used in many formulations worldwide as a functional food and natural remedy to treat gastrointestinal disorders, lung diseases, and certain mental disorders such as epilepsy and depression. This study assessed the bioactivity of its infusion extract (INF) and hydroethanolic extract (HE) to highlight its health benefits. These extracts were analyzed for their chemical composition by HPLC-DAD-ESI-MSn, their antioxidant and antidiabetic properties, and their capacities to protect human erythrocytes against induced hemoglobin oxidation and lipid peroxidation. The effect on normal human dermal fibroblast (NHDF) cells and on the N27 rat dopaminergic neuron cell line was also assessed. The chromatographic analysis identified 57 compounds belonging to hydroxycinnamic acids, flavanones, flavone, and isoflavonoids. In respect to the biological potential, the Mentha aquatica extracts revealed a notable capacity for 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and superoxide radicals, as well as for the inhibition of α-glucosidase action and the protection of human erythrocytes against oxidative damage. Quantification revealed noteworthy phenolic content in both extracts. Additionally, the extracts demonstrated less cytotoxic effects regarding the NHDF and N27 cell lines. Overall, Mentha aquatica presents promising antioxidant activity and a spectrum of potential biological activities, underscoring its significance as a novel antioxidant candidate for applications in animal nutrition, human medicine, and natural product research in the pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (S.S.); (J.M.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- RISE-Health, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.C.G.); (P.S.); (G.A.); (L.R.S.)
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Ana Carolina Gonçalves
- RISE-Health, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.C.G.); (P.S.); (G.A.); (L.R.S.)
| | - Mustapha Bounechada
- University Ferhat Abbes Sétif1, Faculty of Natural Sciences and Life, 19000, Algeria;
| | - Ana R. Nunes
- RISE-Health, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.C.G.); (P.S.); (G.A.); (L.R.S.)
| | - Pedro Soeiro
- RISE-Health, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.C.G.); (P.S.); (G.A.); (L.R.S.)
| | - Gilberto Alves
- RISE-Health, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.C.G.); (P.S.); (G.A.); (L.R.S.)
| | - Diego A. Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables” (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (D.A.M.); (C.G.-V.)
| | - Cristina Garcia-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables” (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (D.A.M.); (C.G.-V.)
| | - Cesar Raposo
- Mass Spectrometry Service, University of Salamanca, 37007 Salamanca, Spain
| | - Samuel Silvestre
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (S.S.); (J.M.R.)
- RISE-Health, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.C.G.); (P.S.); (G.A.); (L.R.S.)
| | - Jesus M. Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (S.S.); (J.M.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Isabel Ismael
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (S.S.); (J.M.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Luís R. Silva
- RISE-Health, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.C.G.); (P.S.); (G.A.); (L.R.S.)
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
2
|
Kostić AŽ, Arserim-Uçar DK, Materska M, Sawicka B, Skiba D, Milinčić DD, Pešić MB, Pszczółkowski P, Moradi D, Ziarati P, Bienia B, Barbaś P, Sudagıdan M, Kaur P, Sharifi-Rad J. Unlocking Quercetin's Neuroprotective Potential: A Focus on Bee-Collected Pollen. Chem Biodivers 2024; 21:e202400114. [PMID: 38386539 DOI: 10.1002/cbdv.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In the quest to evade side effects associated with synthetic drugs, mankind is continually exploring natural sources. In recent decades, neurodegenerative disorders (NDDs) have surged dramatically compared to other human diseases. Flavonoids, naturally occurring compounds, have emerged as potential preventers of NDD development. Notably, quercetin and its derivatives demonstrated excellent antioxidant properties in the fight against NDDs. Recognizing bee-collected pollen (BP) as a well-established excellent source of quercetin and its derivatives, this review seeks to consolidate available data on the prevalence of this flavonoid in BP, contingent upon its botanical and geographical origins. It aims to advocate for BP as a superb natural source of "drugs" that could serve as preventative measures against NDDs. Examination of numerous published articles, detailing the phenolic profile of BP, suggests that it can be a great source of quercetin, with an average range of up to 1000 mg/kg. In addition to quercetin, 24 derivatives (with rutin being the most predominant) have been identified. Theoretical calculations, based on the recommended dietary intake for quercetin, indicate that BP can fulfil from 0.1 to over 100 % of the requirement, depending on BP's origin and bioaccessibility/bioavailability during digestion.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Dılhun Keriman Arserim-Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bingöl University, Bingöl, 12000, Türkiye
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950, Lublin, Poland
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Danijel D Milinčić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Mirjana B Pešić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Piotr Pszczółkowski
- Experimental Department of Cultivar Assessment, Research Centre for Cultivar Testing, Uhnin, 21-211, Dębowa Kłoda, Poland
| | - Donya Moradi
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Ziarati
- Department of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bernadetta Bienia
- Food Production and Safety Department, National Academy of Applied Sciences, Rynek 1 str., 38-400, Krosno, Poland
| | - Piotr Barbaś
- Department Agronomy of Potato, Plant Breeding and Acclimatization Institute - National Research Institute, Branch Jadwisin, 05-140, Serock, Poland
| | - Mert Sudagıdan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Preetinder Kaur
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Punjab Agricultural University, Ludhiana, 141004, Punjab
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, 14-008, Cuenca, Ecuador
| |
Collapse
|
3
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Martuscelli M, Esposito L, Restuccia D, Guo M, Mastrocola D. New Perspectives to Enhance Wastes and By-Products from Agro-Food Processing. Foods 2023; 12:4057. [PMID: 38002114 PMCID: PMC10670864 DOI: 10.3390/foods12224057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The exploitation of by-products and waste from the agri-food industry represents a sustainable approach within the frame of the circular economy, the basis of the European Green Deal and ecological transition [...].
Collapse
Affiliation(s)
- Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (D.M.)
| | - Luigi Esposito
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (D.M.)
| | - Donatella Restuccia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Dino Mastrocola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (D.M.)
| |
Collapse
|
5
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
6
|
Martín-Gómez B, Salahange L, Tapia JA, Martín MT, Ares AM, Bernal J. Fast Chromatographic Determination of Free Amino Acids in Bee Pollen. Foods 2022; 11:foods11244013. [PMID: 36553756 PMCID: PMC9778440 DOI: 10.3390/foods11244013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The consumption of bee pollen has increased in the last few years due to its nutritional and health-promoting properties, which are directly related to its bioactive constituents, such as amino acids. Currently, there is great interest in understanding the role of these in bee products as it provides relevant information, e.g., regarding nutritional value or geographical and botanical origins. In the present study, two fast chromatographic methods were adapted based on commercial EZ:faast™ kits for gas chromatography-mass spectrometry and liquid chromatography−mass spectrometry for determining free amino acids in bee pollen. Both methods involved the extraction of amino acids with water, followed by a solid phase extraction to eliminate interfering compounds, and a derivatization of the amino acids prior to their chromatographic separation. The best results in terms of run time (<7 min), matrix effect, and limits of quantification (3−75 mg/kg) were obtained when gas chromatography−mass spectrometry was employed. This latter methodology was applied to analyze several bee pollen samples obtained from local markets and experimental apiaries. The findings obtained from a statistical examination based on principal component analysis showed that bee pollen samples from commercial or experimental apiaries were different in their amino acid composition.
Collapse
Affiliation(s)
- Beatriz Martín-Gómez
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Laura Salahange
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Jesús A. Tapia
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
- Department of Statistics and Operations Research, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - María T. Martín
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana M. Ares
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - José Bernal
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983186347
| |
Collapse
|
7
|
Ares AM, Tapia JA, González-Porto AV, Higes M, Martín-Hernández R, Bernal J. Glucosinolates as Markers of the Origin and Harvesting Period for Discrimination of Bee Pollen by UPLC-MS/MS. Foods 2022; 11:1446. [PMID: 35627016 PMCID: PMC9141840 DOI: 10.3390/foods11101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bee pollen is currently one of the most commonly consumed food supplements, as it is considered to be a good source of bioactive substances and energy. It contains various health-promoting compounds, such as proteins, amino acids, lipids, as well as glucosinolates. In the present study, the glucosinolate content was determined, by means of ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass detector, in 72 bee pollen samples from four different apiaries in Guadalajara (Spain), harvested in three different periods. In addition, 11 commercial multifloral samples from different Spanish regions were also analyzed. The aim was to verify the suitability of these compounds as biomarkers of their geographical origin, and to test their potential for distinguishing the harvesting period. By means of a canonical discriminant analysis, it was possible to differentiate the apiary of origin of most of the samples, and these could also be clearly differentiated from the commercial ones, simply as a result of the glucosinolate content. In addition, it was also demonstrated for the first time that bee pollen samples were capable of being differentiated according to the time of harvesting and their glucosinolate content.
Collapse
Affiliation(s)
- Ana M. Ares
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.M.A.); (J.A.T.)
| | - Jesús A. Tapia
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.M.A.); (J.A.T.)
- Department of Statistics and Operations Research, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Amelia V. González-Porto
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Apícola y Agroambiental (CIAPA), Camino de San Martín, s/n, 19180 Marchamalo, Spain; (A.V.G.-P.); (M.H.); (R.M.-H.)
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Apícola y Agroambiental (CIAPA), Camino de San Martín, s/n, 19180 Marchamalo, Spain; (A.V.G.-P.); (M.H.); (R.M.-H.)
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Apícola y Agroambiental (CIAPA), Camino de San Martín, s/n, 19180 Marchamalo, Spain; (A.V.G.-P.); (M.H.); (R.M.-H.)
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-EFS/EC-FSE), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain
| | - José Bernal
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.M.A.); (J.A.T.)
| |
Collapse
|
8
|
Gonçalves AC, Flores-Félix JD, Coutinho P, Alves G, Silva LR. Zimbro ( Juniperus communis L.) as a Promising Source of Bioactive Compounds and Biomedical Activities: A Review on Recent Trends. Int J Mol Sci 2022; 23:3197. [PMID: 35328621 PMCID: PMC8952110 DOI: 10.3390/ijms23063197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-derived products and their extracted compounds have been used in folk medicine since early times. Zimbro or common juniper (Juniperus communis) is traditionally used to treat renal suppression, acute and chronic cystitis, bladder catarrh, albuminuria, leucorrhea, and amenorrhea. These uses are mainly attributed to its bioactive composition, which is very rich in phenolics, terpenoids, organic acids, alkaloids, and volatile compounds. In the last few years, several studies have analyzed the huge potential of this evergreen shrub, describing a wide range of activities with relevance in different biomedical discipline areas, namely antimicrobial potential against human pathogens and foodborne microorganisms, notorious antioxidant and anti-inflammatory activities, antidiabetic, antihypercholesterolemic and antihyperlipidemic effects, and neuroprotective action, as well as antiproliferative ability against cancer cells and the ability to activate inductive hepato-, renal- and gastroprotective mechanisms. Owing to these promising activities, extracts and bioactive compounds of juniper could be useful for the development of new pharmacological applications in the treatment of several acute and chronic human diseases.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (P.C.); (G.A.)
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (P.C.); (G.A.)
| | - Paula Coutinho
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (P.C.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (P.C.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (P.C.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|