1
|
Madihalli S, Masti SP, Eelager MP, Chougale RB, Dalbanjan NP, Praveen Kumar SK. Sodium alginate/poly (vinyl alcohol) active films incorporated with Chrysanthemum leaves extract as an eco-friendly approach to extend the shelf life of green chilies. Int J Biol Macromol 2025; 302:140926. [PMID: 39947554 DOI: 10.1016/j.ijbiomac.2025.140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
Recently, biodegradable packaging materials have received significant prominence in the food sector. Herein, chrysanthemum leaves extract (CLE), integrated sodium alginate (SA) and polyvinyl alcohol (PVA) active films were prepared and their physicochemical and multifunctional properties were evaluated for use in green chili packaging. FTIR and SEM results confirmed favorable interaction and uniform dispersion of CLE in the SA/PVA blend film. Addition of CLE to the SA/PVA matrix considerably lowered surface wettability (∼61 %), water solubility (∼28 %), moisture-binding (∼27 %), water vapor transmission and oxygen permeability (∼28 %). CLE-loaded active film demonstrated higher tensile strength (29.06 ± 0.46 MPa), UV light barrier capabilities and significant antimicrobial activity against foodborne pathogens. Additionally, it had an adequate antioxidant capacity of (∼46 %) compared to the control film without CLE. In the study of green chili packaging, the active film containing a more significant amount of CLE limited the weight loss, suppressed microbial growth and retained the polyphenolic and chlorophyll content of the chili. Compared to polyethylene (PE), the fabricated active film displayed a far better packaging capability and extended the shelf life of green chili for up to 10 days. Hence, the fabricated active films were suitable for biodegradable packaging applications.
Collapse
Affiliation(s)
- Suhasini Madihalli
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India.
| | - Manjunath P Eelager
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Ravindra B Chougale
- P.G. Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | | | - S K Praveen Kumar
- P.G. Department of Biochemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| |
Collapse
|
2
|
Mao L, Dong Z, Dong F, Dai X, Cao Z. Development of sustainable and active food packaging films based on alginate enriched with plant polyphenol carbon dots and layered clay. Int J Biol Macromol 2025; 296:139738. [PMID: 39798736 DOI: 10.1016/j.ijbiomac.2025.139738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Natural polymer based food packaging has attracted more and more attention, but the lack of active functions of natural polymer hinders its application in the field of active packaging. In this study, chlorogenic acid carbon dots (CGA-CDs) was synthesized mildly using natural plant polyphenol CGA as carbon source, and CGA functionalized layered clays (LDHs@CGA) was introduced as reinforcing agent. Alg active films were fabricated by solution casting method using natural polysaccharide-alginate (Alg), CGA-CDs and LDHs@CGA. The results showed that the average particle size of the synthesized CGA-CDs was ∼2.0 nm, with obvious graphitized structure inside and active groups (-OH and -NH2, etc.) outside, showing obvious UV absorption and antibacterial activity. With the addition of CGA-CDs, UV barrier, antibacterial, thermal stability, hydrophobicity and flexibility of Alg active films were significantly improved. When the amount of CGA-CDs reached 2 %, UV transmission (280 nm) and of Alg active films was only 2.66 %, which was reduced by 88.1 % compared with pure Alg film. The highest antibacterial rate against Escherichia coli and Staphylococcus aureus reached 86.0 % and 91.6 %, respectively. Freshness preservation experiment of fresh-cut apples indicated that Alg active coating incorporating CGA-CDs maintained the lowest browning index and mildew. These results indicate that the excellent active functions of CGA-CDs can promote the application of Alg matrix in the field of natural polymer active packaging.
Collapse
Affiliation(s)
- Long Mao
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China.
| | - Zhiye Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Fang Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Xianglong Dai
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Zhiming Cao
- Xiamen Meijiamei New Material Technology Co., Ltd., Xiamen 361110, PR China.
| |
Collapse
|
3
|
Tilwani YM, Wani BA, Jom M, Khumbha SB, Varsha P, Saini B, Karthik S, Arul V. Preparation and physicochemical characterization of different biocomposite films blended with bacterial exopolysaccharide EPS MC-5 and bacteriocin for food packaging applications. Int J Biol Macromol 2025; 297:139832. [PMID: 39814298 DOI: 10.1016/j.ijbiomac.2025.139832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The study aims to evaluate how bacteriocin and extracellular polymeric substances (EPS) can influence the development of active packaging for food. The components might enhance the performance of packaging materials in terms of their physicochemical properties and their effectiveness in preserving food. Bacteriocin and EPS exert a significant effect in blocking the transmission of UV and visible light radiations. The molecular stability among the different functional groups of the composite films was evaluated using FT-IR analysis. The MG5 film exhibited the lowest percentage of water solubility (11.27 %) and the highest antibacterial activity against L. monocytogenes and E. coli, with a zone of inhibition measured as 21.32 ± 0.76 and 18.81 ± 0.29 mm, respectively. The TGA results indicated a noteworthy level of thermal stability in the composite films. Specifically, the MG5 bacteriocin blended film exhibited an approved metal chelation activity and demonstrated superior antioxidant activity, as evidenced by enhanced DPPH and ABTS+ scavenging activities. The incorporation of bacteriocin enhanced the interactions among the film components, and surface roughness was greatly impacted as revealed by the FE-SEM analysis. MG5 film exhibited excellent biodegradability in the natural soil environment, according to a soil burial study. To sum up, MG5 films can be an effective food packaging material, particularly for fried or high-fat items that are prone to contamination from microorganisms.
Collapse
Affiliation(s)
- Younus Mohd Tilwani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Bilal Ahmad Wani
- Department of Environmental Science, Sri Pratap College, M.A. Road, Srinagar, Jammu and Kashmir 190001, India
| | - Magna Jom
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Shekar Babu Khumbha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Prabhakaran Varsha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Bharat Saini
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sundaram Karthik
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
4
|
Culqui-Arce C, Mori-Mestanza D, Fernández-Jeri AB, Cruzalegui RJ, Mori Zabarburú RC, Vergara AJ, Cayo-Colca IS, da Silva JG, Araujo NMP, Castro-Alayo EM, Balcázar-Zumaeta CR. Polymers Derived from Agro-Industrial Waste in the Development of Bioactive Films in Food. Polymers (Basel) 2025; 17:408. [PMID: 39940610 PMCID: PMC11819695 DOI: 10.3390/polym17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This review explores the potential of biopolymers as sustainable alternatives to conventional plastics in food packaging. Biopolymers derived from plant or animal sources are crucial in extending food shelf life, minimizing degradation, and protecting against oxidative and microbial agents. Their physical and chemical properties, influenced by the raw materials used, determine their suitability for specific applications. Biopolymers have been successfully used in fruits, vegetables, meats, and dairy products, offering antimicrobial and antioxidant benefits. Consequently, they represent a functional and eco-friendly solution for the packaging industry, contributing to sustainability while maintaining product quality.
Collapse
Affiliation(s)
- Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Armstrong B. Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Robert J. Cruzalegui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Roberto Carlos Mori Zabarburú
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Alex J. Vergara
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| |
Collapse
|
5
|
Hu Y, Feng X, Xu H, Yang J, Yang W. Polycaprolactone/polylactic acid nanofibers incorporated with butyl hydroxyanisole /HP-β-CD assemblies for improving fruit storage quality. Int J Biol Macromol 2024; 283:137637. [PMID: 39547608 DOI: 10.1016/j.ijbiomac.2024.137637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
In this study, the inclusion complex was prepared with butyl hydroxyanisole (BHA) as the functional substance and 2-hydroxypropyl beta-cyclodextrin (HP-β-CD) as the main molecule by ultrasound mediation. The inclusion complex was mixed with polycaprolactone (PCL)/polylactic acid (PLA), and nanofiber films loaded with different concentrations of BHA/HP-β-CD inclusion complex were prepared by electrospinning for fruit preservation. The scanning electron microscopy and infrared spectroscopy characterization results showed that HP-β-CD successfully embedded BHA in the cavity. The encapsulation of BHA increases the fiber diameter and thermal stability and decreases the crystallinity and hydrophobicity. The oxidation resistance experiment showed that the nanofiber film had a strong free radical scavenging ability. The BHA release rate of the nanofiber membrane was determined by high-performance liquid chromatography, and the release curve results showed that the inclusion complex prepared by ultrasonic self-assembly could significantly prolong the BHA release time. In addition, nanofiber films containing inclusion complex showed an effective fresh-keeping effect within 7 days of mango storage. In conclusion, a series of characterization tests show that the nanofiber film prepared in this study has a good market prospect in food preservation.
Collapse
Affiliation(s)
- Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| | - Xiaomin Feng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Huijin Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Jiyuan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
6
|
Dong F, Dong Z, Mao L, Yao J, Wang C. Development of crosslinked gelatin films through Maillard reaction and reinforced with poly(vinyl alcohol) for active food packaging. Int J Biol Macromol 2024; 277:134095. [PMID: 39059526 DOI: 10.1016/j.ijbiomac.2024.134095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
In order to improve the functionality of natural gelatin films for active food packaging applications, a combined strategy of crosslinking via Maillard reaction and blending enhancement incorporated with poly(vinyl alcohol) (PVA) was explored. In this study, when the mass ratio of gelatin to glucose was 10:1, Maillard reaction of crosslinked gelatin films was the highest, UV absorption and browning index reached the maximum. Infrared analysis showed that PVA could form strong interfacial interactions with gelatin matrix. The presence of PVA could significantly improve the toughness, water absorption, transparency, and oxygen barrier properties of crosslinked gelatin films. When the amount of PVA reached 5 %, elongation at break and oxygen barrier properties of crosslinked gelatin films were improved by 76.7 % and 47.9 % compared with pure crosslinked gelatin film. Even when the amount of PVA reached 10 %, UV absorption (at 315 nm) of crosslinked gelatin films still exceeded 98.7 %. The addition of PVA could accelerate the dissolution and swelling of crosslinked gelatin films, promoting the migration and release of active substances (Maillard reaction products (MRPs)). The two antioxidant activities tests (DPPH and ABTS method) achieved the highest radical scavenging rates of 71.6 % and 91.2 %, respectively, with corresponding PVA addition of 5 % and 7.5 %. After continuing to add PVA, antioxidant activities began to significantly decrease, which was directly related to the decrease in the generation of MRPs. Therefore, crosslinked gelatin films reinforced with appropriate amount of PVA can be considerable potential as active films for renewable food packaging applications.
Collapse
Affiliation(s)
- Fang Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Zhiye Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Long Mao
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China.
| | - Jin Yao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Chengyu Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
7
|
Zhao Y, Ma X, Wang G, Gao L, Zhang M, Ding Y, Lv S. Pomegranate peel extract incorporated soy protein isolate/Artemisia sphaerocephala Krasch. gum composite films for fresh-cut apples preservation. Int J Biol Macromol 2024; 280:135649. [PMID: 39284472 DOI: 10.1016/j.ijbiomac.2024.135649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The objective of this study was to prepare an active packaging film using phosphorylated soy protein isolate (PPS) and Artemisia sphaerocephala Krasch. gum (ASKG) as film matrices, with the incorporation of pomegranate peel extract (PPE) to preserve fresh-cut apples. The results showed that PA-PPE (PPS/ASKG-PPE) films significantly increased thickness by 24.47 %, tensile strength by 58.76 %, and elongation at break by 30.48 %. Additionally, water vapor permeability and oxygen permeability decreased significantly to 6.17 × 10-13 and 0.62 × 10-13 Kg•m•m-2•s-1•Pa-1, respectively. FTIR, XRD, and SEM analyses confirmed the formation of intermolecular hydrogen bonds between PPS, ASKG, and polyphenols extracted from pomegranate peel, indicating excellent compatibility. Furthermore, radical scavenging activity experiments demonstrated that these films exhibited a remarkable ability to scavenge DPPH and ABTS+ radicals up to 70.44 % and 74.28 %, respectively, when the PPE content was at 3 wt%. Moreover, PPS could achieve a sustained release effect on polyphenols with a relatively low release rate (63.83 %) even after seven days' time elapsed. Finally, the PA-PPE film displayed superior performance in reducing the weight loss and browning index of fresh-cut apples within 24 h of storage. The development of PA-PPE film could promote sustainable resource protection and demonstrate promising prospects in the field of fresh-cut fruit packaging.
Collapse
Affiliation(s)
- Yucong Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xueli Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guohua Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Le Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mengyao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yong Ding
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
8
|
Prajapati RA, Jadeja GC. Red dragon fruit-soy protein isolate biofilm: UV-blocking, antioxidant & improved mechanical properties for sustainable food packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1686-1700. [PMID: 39049919 PMCID: PMC11263314 DOI: 10.1007/s13197-024-05940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 07/27/2024]
Abstract
In this study, an active biofilm was developed by incorporating red dragon fruit peel (RDF) extract into soy protein isolate (SPI) film matrix for sustainable food packaging. The addition of betalain-rich-RDF extract (1-7 wt%) significantly improved UV-blocking and antioxidant properties of the film compared to the control film. As wt% of RDF-extract increased, water vapor permeability, water solubility, and elongation at break decreased by 1.06 × 10-10 g m m-2 s-1 Pa-1, 34.25%, and 133.25%, respectively. On the other hand, Tensile strength increased significantly (P < 0.05) by 78.76%. FTIR results confirmed the intermolecular interaction between RDF extract and SPI through hydrogen bonding, while XRD result showed a decrease in the crystallinity degree of the film with RDF extract addition. However, no significant change in the TGA curve between extract-incorporated SPI films was observed. SEM analysis revealed that SPI B and SPI D films had a more compact and denser structure than the control film, while AFM analysis showed an increase in Ra and Rq values representing higher surface roughness of SPI D film. SPI D film also significantly (P < 0.05) decreased the weight loss and increased total soluble solids of freshly cut apples over 7-day storage period. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05940-2.
Collapse
Affiliation(s)
- Rushikesh A. Prajapati
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat India
| | - Girirajsinh C. Jadeja
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat India
| |
Collapse
|
9
|
Silva JM, Vilela C, Girão AV, Branco PC, Martins J, Freire MG, Silvestre AJD, Freire CSR. Wood inspired biobased nanocomposite films composed of xylans, lignosulfonates and cellulose nanofibers for active food packaging. Carbohydr Polym 2024; 337:122112. [PMID: 38710545 DOI: 10.1016/j.carbpol.2024.122112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024]
Abstract
The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.
Collapse
Affiliation(s)
- José M Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Violeta Girão
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro C Branco
- RAIZ - Instituto de Investigação da Floresta e Papel, 3800-783 Eixo, Aveiro, Portugal
| | - João Martins
- Biotek S.A., 6030-223 Vila Velha de Ródão, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Jiang Q, Zhao S, Zhao W, Wang P, Qin P, Wang J, Zhao Y, Ge Z, Zhao X, Wang D. The role of water distribution, cell wall polysaccharides, and microstructure on radish ( Raphanus sativus L.) textural properties during dry-salting process. Food Chem X 2024; 22:101407. [PMID: 38711773 PMCID: PMC11070821 DOI: 10.1016/j.fochx.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Radish (Raphanus sativus L.) undergoes texture changes in their phy-chemical properties during the long-term dry-salting process. In our study, we found that during the 60-day salting period, the hardness and crispness of radish decreased significantly. In further investigation, we observed that the collaborative action of pectin methylesterase (PME) and polygalacturonase (PG) significantly decreased the total pectin, alkali-soluble pectin (ASP), and chelator-soluble pectin (CSP) content, while increasing the water-soluble pectin (WSP) content. Furthermore, the elevated activities of cellulase and hemicellulase directly led to the notable fragmentation of cellulose and hemicellulose. The above reactions jointly induced the depolymerization and degradation of cell wall polysaccharides, resulting in an enlargement of intercellular spaces and shrinkage of the cell wall, which ultimately led to a reduction in the hardness and crispness of the salted radish. This study provided key insights and guidance for better maintaining textural properties during the dry-salting process of radish.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Junjuan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
11
|
Oliveira JPLD, Carneiro WF, Silva KCDD, Martins MSDA, de Souza SP, Virote BDCR, Konig IFM, Vilas Boas EVDB, Murgas LDS, Carvalho EEN. Diet with different concentrations of lychee peel flour modulates oxidative stress parameters and antioxidant activity in zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2024; 272:110964. [PMID: 38431089 DOI: 10.1016/j.cbpb.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The agri-food industry generates substantial waste, leading to significant environmental impacts. Lychee (Litchi chinensis Sonnerat), which is rich in bioactive compounds in its peel, pulp, and seeds, offers an opportunity for waste use. This study aimed to evaluate the effects of supplementing a high-carbohydrate diet with varying levels of lychee peel flour on lipid metabolism biomarkers and oxidative stress in a zebrafish (Danio rerio) model. A total of 225 zebrafish, approximately four months old, were divided into five groups: control, high-carbohydrate (HC), HC2%, HC4%, and HC6%. The study did not find significant differences in the growth performance of zebrafish in any group. However, the HC6% group exhibited a significant decrease in glucose and triglyceride levels compared with the HC group. Furthermore, this group showed enhanced activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), along with reduced levels of malondialdehyde (MDA). Increased antioxidant activity was also evidenced by DPPH-, ABTS+, and β-carotene/Linoleic acid assays in the HC6% group. A positive correlation was identified between SOD/CAT activity and in vitro antioxidant assays. These findings suggest that dietary supplementation with 6% lychee peel flour can significantly modulate glucose homeostasis, lipid metabolism, and antioxidant activity in zebrafish.
Collapse
Affiliation(s)
- João Paulo Lima de Oliveira
- Lavras School of Agricultural Sciences, Department of Agriculture, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | - William Franco Carneiro
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | - Kiara Cândido Duarte da Silva
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | - Moises Silvestre de Azevedo Martins
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | - Stefania Priscilla de Souza
- Faculty of Animal Science and Veterinary Medicine, Department of Animal Science, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | - Bárbara do Carmo Rodrigues Virote
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | - Isaac Filipe Moreira Konig
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | | | - Luis David Solis Murgas
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, 37200-900, Minas Gerais, Brazil
| | - Elisângela Elena Nunes Carvalho
- Lavras School of Agricultural Sciences, Department of Food Science, Federal University of Lavras, 37200-900, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Li P, Zhang Y, Cao C, Luo Y, Kan H, Liu Y. Screening and Characterization of Antioxidant Film Applicable to Walnut Kernels from Juglans sigillata. Foods 2024; 13:1313. [PMID: 38731685 PMCID: PMC11083998 DOI: 10.3390/foods13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Walnuts play a positive role in human health due to their large amounts of unsaturated fatty acids, whereas lipid oxidation can easily occur during storage. Herein, three natural antioxidants (epicatechin, sesamol, and myricetin) were added to the composite film cross-linked with chitosan and soy protein peptide, and the antioxidant film appropriate for the preservation of walnut kernels from Juglans sigillata was screened to improve the storage quality of walnuts. The results showed that three antioxidant films could all enhance the storage performance of walnut kernels, with sesamol being the best. The characterization of antioxidant film cross-linked with chitosan and soy protein peptide containing sesamol (C/S-ses film) revealed that the composite film improved the slow release and stability of sesamol; in addition, the presence of sesamol could effectively reduce the light transmittance and water vapor permeability of the composite film, together with significantly enhancing the antioxidant and antimicrobial activities, resulting in an effective prolongation of the storage period of walnut kernels. These findings indicated that C/S-ses possess excellent potential for retarding the oxidative rancidity of unsaturated fatty acids and will provide an effective strategy for the preservation of walnut kernels.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (P.L.); (Y.Z.); (C.C.); (H.K.)
| | - Yujia Zhang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (P.L.); (Y.Z.); (C.C.); (H.K.)
| | - Changwei Cao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (P.L.); (Y.Z.); (C.C.); (H.K.)
| | - Yaxi Luo
- Faculty of Human Nutrition Science, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada;
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (P.L.); (Y.Z.); (C.C.); (H.K.)
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (P.L.); (Y.Z.); (C.C.); (H.K.)
| |
Collapse
|
13
|
Tilwani YM, Lakra AK, Domdi L, Arul V. Preparation and functional characterization of the bio-composite film based on chitosan/polyvinyl alcohol blended with bacterial exopolysaccharide EPS MC-5 having antioxidant activities. Int J Biol Macromol 2023; 245:125496. [PMID: 37355066 DOI: 10.1016/j.ijbiomac.2023.125496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
In this study, the plate casting method was successfully used to prepare biocomposite films containing EPS from probiotic Enterococcus faecium MC-5 in combination with PVA and chitosan. The findings demonstrated that EPS was uniformly distributed in the film matrices and significantly improved the physicochemical properties of the resulting composite films. The development of intermolecular connections between the polymers was detected by high tensile strength and low water vapour transmission rate. EPS plays an important role in limiting the passage of UV- and visible light radiations through the films. FT-IR analysis was used to determine the molecular compatibility between the functional groups of the blended films made up of chitosan-EPS and PVA-EPS. The TGA results showed that composite films have a significant degree of thermal stability. The presence of amorphous peaks in the composite film was confirmed by XRD analysis. The EPS blended films displayed a greater antioxidant property than the PVA and chitosan films, as determined by DPPH and hydroxyl radical scavenging activities. Interestingly, the EPS-derived films showed enhanced metal chelation activity and strong antibacterial properties against Listeria monocytogenes and Staphylococcus aureus. EPS-based composite films performed better than chitosan and PVA films in terms of degradation rate. The overall functional characteristics of the EPS blended films suggested that they could be used as a packaging material to replace or reduce the use of conventional petroleum-based packaging materials.
Collapse
Affiliation(s)
- Younus Mohd Tilwani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Avinash Kant Lakra
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Latha Domdi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry Pin code: 605014, India.
| |
Collapse
|
14
|
Liu Y, Liu R, Shi J, Zhang R, Tang H, Xie C, Wang F, Han J, Jiang L. Chitosan/esterified chitin nanofibers nanocomposite films incorporated with rose essential oil: Structure, physicochemical characterization, antioxidant and antibacterial properties. Food Chem X 2023; 18:100714. [PMID: 37397189 PMCID: PMC10314151 DOI: 10.1016/j.fochx.2023.100714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Active films were developed based on chitosan, esterified chitin nanofibers and rose essential oil (REO). The joint effects of chitin nanofibers and REO on structure and physicochemical properties of chitosan film were investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy showed that the chitin nanofibers and REO had significant effects on the morphology and chemical structure of chitosan composite films. The negatively charged esterified chitin nanofibers formed a compact network structure through intermolecular hydrogen bonding and electrostatic interactions with the positively charged chitosan matrix. Chitin nanofibers and REO synergistically enhanced the water resistance, mechanical properties and UV resistance of chitosan-based films, but the addition of REO increased the oxygen permeability. Furthermore, the addition of REO enhanced the inhibition of ABTS and DPPH free radicals and microorganisms by chitosan-based film. Therefore, chitosan/chitin nanofiber-based active films containing REO as food packaging materials can potentially provide protection to extend food shelf life.
Collapse
Affiliation(s)
- Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| | - Jingbo Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Xie C, Wang F, He Z, Tang H, Li H, Hou J, Liu Y, Jiang L. Development and characterization of active packaging based on chitosan/chitin nanofibers incorporated with scallion flower extract and its preservation in fresh-cut bananas. Int J Biol Macromol 2023; 242:125045. [PMID: 37230454 DOI: 10.1016/j.ijbiomac.2023.125045] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study was to develop a novel active packaging using chitosan (CS) and esterified chitin nanofibers (CF) combined with different contents (1, 2 and 4 wt% on CS basis) of scallion flower extract (SFE) to protect banana samples. The addition of CF significantly improved the barrier and mechanical properties of the CS films (p < 0.05) due to hydrogen bonds and electrostatic interactions. Moreover, the addition of SFE not only improved the physical properties of the CS film but also improved the CS film biological activity. The oxygen barrier property and antibacterial ability of CF-4%SFE were approximately 5.3 and 1.9 times higher than those of the CS film, respectively. In addition, CF-4%SFE had strong DPPH radical scavenging activity (74.8 ± 2.3 %) and ABTS radical scavenging activity (84.06 ± 2.08 %). Fresh-cut bananas stored in CF-4%SFE showed less weight loss, starch loss, color and appearance change than those stored in traditional polyethylene film, which indicated that CF-4%SFE was much better at storing fresh-cut bananas than conventional plastic packaging. For these reasons, CF-SFE films have great potential as a candidate to replace traditional plastic packaging and extend the shelf life of packaged foods.
Collapse
Affiliation(s)
- Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zichuan He
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Zheng M, Zhu Y, Zhuang Y, Tan KB, Chen J. Effects of grape seed extract on the properties of pullulan polysaccharide/xanthan gum active films for apple preservation. Int J Biol Macromol 2023; 241:124617. [PMID: 37119919 DOI: 10.1016/j.ijbiomac.2023.124617] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Grape seed extract (GSE) was added to pullulan polysaccharide (PP)/xanthan gum (XG) as composite film (PP/XG/GSE or PXG). The observed composite morphology indicated their biocompatibility. Sample PXG100 (contain 100 mg/L GSE) demonstrated the best mechanical properties, with tensile strength of 16.62 ± 1.27 MPa, and the elongation at break of (22.60 ± 0.48)%. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity of PXG150 were the highest at (81.52 ± 1.57)% and (90.85 ± 1.54)%, respectively. PXG films also demonstrated inhibitory effects on Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The PXG films could also prolong the shelf life of fresh-cut apples because it could decrease the rate of weight loss and retain more vitamin C and total polyphenol even on the 5th day. The weight loss rate of PXG150 was decreased from (8.58 ± 0.6)% (control) to (4.15 ± 0.19)%. It was able to achieve vitamin C and total polyphenol retention rate of 91 % and 72 %, respectively, which was significantly higher that the control sample. Therefore, GSE had contributed in enhancing the antibacterial, antioxidant properties, mechanical strength, UV protection and water resistance in PXG composite films. This effectively extend the shelf life of fresh-cut apples, which it will be an excellent food packaging material.
Collapse
Affiliation(s)
- Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yuanhong Zhuang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Kok Bing Tan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, Xiamen 361021, PR China.
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, PR China.
| |
Collapse
|
17
|
Luo X, Peng Y, Qin Z, Tang W, Duns GJ, Dessie W, He N, Tan Y. Chitosan-based packaging films with an integrated antimicrobial peptide: Characterization, in vitro release and application to fresh pork preservation. Int J Biol Macromol 2023; 231:123209. [PMID: 36639078 DOI: 10.1016/j.ijbiomac.2023.123209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Chitosan (CS) films were developed incorporating peptide HX-12C. The films were studied to determine their microstructures, physical properties, release properties of peptide HX-12C and functional properties. The results indicated that there may be hydrogen bonding interactions between CS and peptide HX-12C, thereby creating a homogeneous internal microstructure and lower crystallinity (10.8-12.8 %). Compared with CS film, CS-HX-12C films displayed lower light transmission, MC (20.8-19.9 %), WVP (8.82-8.59 × 10-11·g·m-1·s-1·Pa-1), OTR (0.015-0.037 cc/(m2.day)) and higher WS (15.7-32.4 %) values. Moreover, controlled-release experiments showed that pH, ionic strength and temperature could all significantly affect the release of peptide HX-12C from the films. Finally, the increase of pH value and TVC and lipid oxidation of fresh pork were delayed due to the treatment with CS-2%HX-12C film. However, incorporating peptide HX-12C into CS films did not improve the mechanical properties of the films and their effects against protein oxidation. Our results suggest that the CS-based antimicrobial packaging films integrated with peptide HX-12C exhibit the potential for fresh pork preservation.
Collapse
Affiliation(s)
- Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Yafang Peng
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China.
| | - Wufei Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Gregory J Duns
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
18
|
Stefanowska K, Woźniak M, Dobrucka R, Ratajczak I. Chitosan with Natural Additives as a Potential Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1579. [PMID: 36837209 PMCID: PMC9962944 DOI: 10.3390/ma16041579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
19
|
Wang F, Xie C, Ye R, Tang H, Jiang L, Liu Y. Development of active packaging with chitosan, guar gum and watermelon rind extract: Characterization, application and performance improvement mechanism. Int J Biol Macromol 2023; 227:711-725. [PMID: 36565825 DOI: 10.1016/j.ijbiomac.2022.12.210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The objective of this study was to make a film matrix containing chitosan (CS) and guar gum (GG), and to improve the physicochemical properties of the film using watermelon rind extract (WRE) as a cross-linker and active substance for the preservation of fresh-cut bananas. The results of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy showed that the WRE and CG matrix formed intermolecular hydrogen bond interactions, which made the structure of the resulting films more compact. With increasing amounts of WRE, the mechanical properties of the films were significantly increased, but the permeability of water vapor and oxygen was significantly decreased (p < 0.05). Notably, when the amount of extract reached 4 wt%, the DPPH radical scavenging activity of the composite film significantly increased to 83.24 %, and the antibacterial activity also reached its highest value. Fresh-cut bananas were stored at room temperature with polyethylene film, CG and CG-WRE. The CG with 4 wt% WRE effectively inhibited the changes in appearance, firmness, weight, color and total soluble solids content of fresh-cut bananas during storage. Therefore, CG-WRE as a novel active food packaging material, has good physicochemical properties and great potential to extend the shelf life of foods.
Collapse
Affiliation(s)
- Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rong Ye
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Nian L, Wang M, Sun X, Zeng Y, Xie Y, Cheng S, Cao C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:2304-2339. [PMID: 36123805 DOI: 10.1080/10408398.2022.2122924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The consumption of fresh fruits and vegetables is restricted by the susceptibility of fresh produce to deterioration caused by postharvest physiological and metabolic activities. Developing efficient preservation strategies is thus among the most important scientific issues to be urgently addressed in the field of food science. The incorporation of active agents into a polymer matrix to prepare biodegradable active packaging is being increasingly explored to mitigate the postharvest spoilage of fruits and vegetables during storage. This paper reviews the composition of biodegradable polymers and the methods used to prepare biodegradable active packaging. In addition, the interactions between bioactive ingredients and biodegradable polymers that can lead to plasticizing or cross-linking effects are summarized. Furthermore, the applications of biodegradable active (i.e., antibacterial, antioxidant, ethylene removing, barrier, and modified atmosphere) packaging in the preservation of fruits and vegetables are illustrated. These films may increase sensory acceptability, improve quality, and prolong the shelf life of postharvest products. Finally, the challenges and trends of biodegradable active packaging in the preservation of fruits and vegetables are discussed. This review aims to provide new ideas and insights for developing novel biodegradable active packaging materials and their practical application in the preservation of postharvest fruits and vegetables.
Collapse
Affiliation(s)
- Linyu Nian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Sun
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yan Zeng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yao Xie
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
23
|
Development and characterization of chitosan/guar gum active packaging containing walnut green husk extract and its application on fresh-cut apple preservation. Int J Biol Macromol 2022; 209:1307-1318. [PMID: 35483509 DOI: 10.1016/j.ijbiomac.2022.04.145] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023]
Abstract
The aim of this work was to develop active packaging film by using chitosan/guar gum (CG) film matrix and walnut green husk extract (WE), for preservation of fresh-cut apple. WE was used as cross-linking agent to improve physicochemical properties, and as active substances to enhance antioxidant activity of CG films. Fourier transform infrared spectroscopy and scanning electron microscopy results showed WE formed intermolecular hydrogen bond interactions with the film matrix, and microstructures of the film were more compact. With the increase of WE content (0-4 wt%), the mechanical properties of composite films were significantly enhanced, while permeability of water vapor and oxygen was significantly decreased (p < 0.05). When the amount of extract reached 4 wt%, the DPPH radical scavenging activity of composite film was significantly increased to 94.59%. CG-WE and CG films were used as active packaging materials to preserve fresh-cut apple. When stored at 4 °C for 10 days, CG-WE films showed better performance in reducing firmness, weight loss, total soluble solids and inhibiting browning and microbial growth of fresh-cut apples. Therefore, as a new type of active food packaging material, CG-WE films have good physical properties, and great potential in ensuring food quality and extending shelf life.
Collapse
|
24
|
Olewnik-Kruszkowska E, Gierszewska M, Wrona M, Nerin C, Grabska-Zielińska S. Polylactide-Based Films with the Addition of Poly(ethylene glycol) and Extract of Propolis-Physico-Chemical and Storage Properties. Foods 2022; 11:1488. [PMID: 35627058 PMCID: PMC9140627 DOI: 10.3390/foods11101488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Polymeric films based on polylactide (PLA) with the addition of poly(ethylene glycol) (PEG) and a chloroformic extract of propolis were obtained. In the case of the studied films, polylactide (PLA) played the role of polymeric matrix and poly(ethylene glycol) was used as a plasticizer, while the extract of propolis was incorporated as a compound that could significantly affect the properties of the obtained materials, especially the water vapour permeation rate and the stability of the food products. Moreover, changes in structure, morphology, mechanical and storage properties as well as differences in colour, thickness and transparency after introducing propolis into the PLA-PEG system were determined. Based on the obtained results, it was established that the addition of the chloroformic extract of propolis significantly influences the most important properties taken into account during food packaging. It was also noticed that films with incorporated propolis were characterised by a significant improvement in the water vapour barrier property. Moreover, the obtained results prove that packaging containing a chloroformic propolis extract allow for the maintenance of the quality of the fruit stored for an extended period of time. To summarise, the application of a chloroformic propolis extract enables the formation of packaging materials that extend the shelf life of stored food products.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Magdalena Gierszewska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Magdalena Wrona
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, University of Zaragoza, Torres Quevedo Building, María de Luna Street. 3, 50018 Zaragoza, Spain; (M.W.); (C.N.)
| | - Cristina Nerin
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, University of Zaragoza, Torres Quevedo Building, María de Luna Street. 3, 50018 Zaragoza, Spain; (M.W.); (C.N.)
| | - Sylwia Grabska-Zielińska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| |
Collapse
|
25
|
Xie Y, Cheng G, Wu Z, Shi S, Zhao J, Jiang L, Jiang D, Yuan M, Wang Y, Yuan M. Preparation and Characterization of New Electrospun Poly(lactic acid) Nanofiber Antioxidative Active Packaging Films Containing MCM-41 Mesoporous Molecular Sieve Loaded with Phloridzin and Their Application in Strawberry Packaging. NANOMATERIALS 2022; 12:nano12071229. [PMID: 35407347 PMCID: PMC9000760 DOI: 10.3390/nano12071229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Health concerns about food safety have increased in recent years. In order to ensure the safety and increase the shelf-life of food, many methods have been used to slow down the oxidation rate of food fat. In order to solve this problem, a new type of antioxidant-active packaging has emerged. Poly(lactic acid) (PLA) films containing phloridzin adsorbed on to an MCM-41 mesoporous molecular sieve were prepared by electrostatic spinning, using PLA as a film-forming substrate, phloridzin as an antioxidant, and MCM-41 as the adsorption and controlled release carrier. The physical properties of the new films—including microscopic structure, water vapor transmission rate, and fresh-keeping effects, as well as the mechanical, thermal, antioxidant, and antibacterial properties—were studied. When the mass ratio of MCM-41 to phloridzin is 1:2, the nanofiber membrane achieves a 53.61% free-radical scavenging rate and better antibacterial performance (85.22%) due to the high content of phloridzin (30.54%). Additionally, when the mass ratio of the molecular sieve to phloridzin is 1:2 and 3:4 (with the best antibacterial performance of 89.30%), the films significantly delay lipid oxidation in the strawberry packaging, allowing the fresh-keeping time to be extended to up to 21 days before mildew appears. In this study, an MCM-41 mesoporous molecular sieve was used to load phloridzin for the first time. The packaging film with phloridzin, MCM-41, and poly(lactic acid) were used as the raw materials and electrospinning technology was used to prepare the packaging film with antioxidant activity. The packaging film was used for the first time in the packaging of strawberries.
Collapse
Affiliation(s)
- Yuan Xie
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zhoushan Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Lin Jiang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Dengbang Jiang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Mingwei Yuan
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Yudan Wang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
- Correspondence: (Y.W.); (M.Y.)
| | - Minglong Yuan
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
- Correspondence: (Y.W.); (M.Y.)
| |
Collapse
|