1
|
Elgendy AET, Elsaid H, Saudy HS, Wehbe N, Ben Hassine M, Al-Nemi R, Jaremko M, Emwas AH. Undergoing lignin-coated seeds to cold plasma to enhance the growth of wheat seedlings and obtain future outcome under stressed ecosystems. PLoS One 2024; 19:e0308269. [PMID: 39316615 PMCID: PMC11421780 DOI: 10.1371/journal.pone.0308269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/18/2024] [Indexed: 09/26/2024] Open
Abstract
Climate changes threat global food security and food production. Soil salinization is one of the major issues of changing climate, causing adverse impacts on agricultural crops. Germination and seedlings establishment are damaged under these conditions, so seeds must be safeguard before planting. Here, we use recycled organic tree waste combined with cold (low-pressure) plasma treatment as grain coating to improve the ability of wheat seed cultivars (Misr-1 and Gemmeza-11) to survive, germinate and produce healthy seedlings. The seeds were coated with biofilms of lignin and hash carbon to form a protective extracellular polymeric matrix and then exposed them to low-pressure plasma for different periods of time. The effectiveness of the coating and plasma was evaluated by characterizing the physical and surface properties of coated seeds using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) spectroscopy, and wettability testing. We also evaluated biological and physiological properties of coated seeds and plants they produced by studying germination and seedling vigor, as well as by characterizing fitness parameters of the plants derived from the seeds. The analysis revealed the optimal plasma exposure time to enhance germination and seedling growth. Taken together, our study suggests that combining the use of recycled organic tree waste and cold plasma may represent a viable strategy for improving crop seedlings performance, hence encouraging plants cultivation in stressed ecosystems.
Collapse
Affiliation(s)
| | - Hesham Elsaid
- Faculty of Science, Physics Department, Ain Shams University Cairo, Cairo, Egypt
| | - Hani S. Saudy
- Faculty of Agriculture, Agronomy Department, Ain Shams University Cairo, Cairo, Egypt
| | - Nimer Wehbe
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mohamed Ben Hassine
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ruba Al-Nemi
- Biological and Environmental Science and Engineering (BESE) Division, Bioscience Program, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Kulišová M, Rabochová M, Lorinčík J, Maťátková O, Brányik T, Hrudka J, Scholtz V, Jarošová Kolouchová I. Comparative assessment of UV-C radiation and non-thermal plasma for inactivation of foodborne fungal spores suspension in vitro. RSC Adv 2024; 14:16835-16845. [PMID: 38784412 PMCID: PMC11114098 DOI: 10.1039/d4ra01689k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Fungal contamination poses a persistent challenge to industries, particularly in food, healthcare, and clinical sectors, due to the remarkable resilience of fungi in withstanding conventional control methods. In this context, our research delves into the comparative efficacy of UV radiation and non-thermal plasma (NTP) on key foodborne fungal contaminants - Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The study examined the impact of varying doses of UV radiation on the asexual spores of all mentioned fungal strains. Simultaneously, the study compared the effects of UV radiation and NTP on the metabolic activity of cells after spore germination and their subsequent germination ability. The results revealed that UV-C radiation (254 nm) did not significantly suppress the metabolic activity of cells after spore germination. In contrast, NTP exhibited almost 100% effectiveness on both selected spores and their subsequent germination, except for A. niger. In the case of A. niger, the effectiveness of UV-C and NTP was nearly comparable, showing only a 35% decrease in metabolic activity after 48 hours of germination, while the other strains (A. alternata, F. culmorum, F. graminearum) exhibited a reduction of more than 95%. SEM images illustrate the morphological changes in structure of all tested spores after both treatments. This study addresses a crucial gap in existing literature, offering insights into the adaptation possibilities of treated cells and emphasizing the importance of considering exposure duration and nutrient conditions (introduction of fresh medium). The results highlighted the promising antimicrobial potential of NTP, especially for filamentous fungi, paving the way for enhanced sanitation processes with diverse applications.
Collapse
Affiliation(s)
- Markéta Kulišová
- University of Chemistry and Technology, Prague, Department of Biotechnology Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Michaela Rabochová
- Research Centre Rez, Department of Material Analysis Hlavní 130, 250 68, Husinec-Řež Czech Republic
- Czech Technical University in Prague, Faculty of Biomedical Engineering nám. Sítná 3105 272 01 Kladno Czech Republic
| | - Jan Lorinčík
- Research Centre Rez, Department of Material Analysis Hlavní 130, 250 68, Husinec-Řež Czech Republic
| | - Olga Maťátková
- University of Chemistry and Technology, Prague, Department of Biotechnology Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Tomáš Brányik
- Research Institute of Brewing and Malting Lípová 15 120 44 Prague Czech Republic
| | - Jan Hrudka
- University of Chemistry and Technology, Prague, Department of Physics and Measurements Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Vladimír Scholtz
- University of Chemistry and Technology, Prague, Department of Physics and Measurements Technická 5, 166 28, Praha 6 Prague Czech Republic
| | - Irena Jarošová Kolouchová
- University of Chemistry and Technology, Prague, Department of Biotechnology Technická 5, 166 28, Praha 6 Prague Czech Republic
| |
Collapse
|
3
|
Mravlje J, Kobal T, Regvar M, Starič P, Zaplotnik R, Mozetič M, Vogel-Mikuš K. The Sensitivity of Fungi Colonising Buckwheat Grains to Cold Plasma Is Species Specific. J Fungi (Basel) 2023; 9:609. [PMID: 37367545 DOI: 10.3390/jof9060609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi are the leading cause of plant diseases worldwide and are responsible for enormous agricultural and industrial losses on a global scale. Cold plasma (CP) is a potential tool for eliminating or inactivating fungal contaminants from biological material such as seeds and grains. This study used a low-pressure radiofrequency CP system with oxygen as the feed gas to test the decontamination efficacy of different genera and species commonly colonising buckwheat grains. Two widely accepted methods for evaluating fungal decontamination after CP treatment of seeds were compared: direct cultivation technique or contamination rate method (%) and indirect cultivation or colony-forming units (CFU) method. For most of the tested fungal taxa, an efficient decrease in contamination levels with increasing CP treatment time was observed. Fusarium graminearum was the most susceptible to CP treatment, while Fusarium fujikuroi seems to be the most resistant. The observed doses of oxygen atoms needed for 1-log reduction range from 1024-1025 m-2. Although there was some minor discrepancy between the results obtained from both tested methods (especially in the case of Fusarium spp.), the trends were similar. The results indicate that the main factors affecting decontamination efficiency are spore shape, size, and colouration.
Collapse
Affiliation(s)
- Jure Mravlje
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Tanja Kobal
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Marjana Regvar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Pia Starič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Rok Zaplotnik
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Sainz-García E, Alba-Elías F. Advances in the Application of Cold Plasma Technology in Foods. Foods 2023; 12:foods12071388. [PMID: 37048207 PMCID: PMC10093801 DOI: 10.3390/foods12071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
In the last two decades, non-thermal processing technologies have gained widespread attention from the food industry, which is interested in mild and effective processes [...].
Collapse
Affiliation(s)
- Elisa Sainz-García
- Department of Mechanical Engineering, University of La Rioja, C/San José de Calasanz 31, 26004 Logroño, Spain
| | - Fernando Alba-Elías
- Department of Mechanical Engineering, University of La Rioja, C/San José de Calasanz 31, 26004 Logroño, Spain
| |
Collapse
|
5
|
Florescu I, Radu I, Teodoru A, Gurau L, Chireceanu C, Bilea F, Magureanu M. Positive Effect Induced by Plasma Treatment of Seeds on the Agricultural Performance of Sunflower. PLANTS (BASEL, SWITZERLAND) 2023; 12:794. [PMID: 36840142 PMCID: PMC9966849 DOI: 10.3390/plants12040794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The need for efficient technologies to enhance productivity in agriculture strongly motivates research on plasma treatment of seeds and plants. In this study, the influence of plasma treatment on sunflower (Helianthus annuus L.) seeds was evidenced throughout the entire life span of the plants. The seeds were packed in a DBD reactor operated in air and treated in plasma for 10 min, using a sinusoidal voltage of 16 kV amplitude at 50 Hz frequency. Early growth observation of plants under laboratory conditions showed that, after a slower start, the plasma-treated seeds developed faster and produced taller seedlings with greater total mass as compared to the control samples. Results obtained from mature plants cultivated in the field revealed a positive effect of plasma exposure with respect to capitulum size, number of seeds per capitulum and mass per thousand seeds, resulting in a remarkable increase in crop yield. The plasma effect lasted for at least two weeks of seed storage; however, it was considerably affected by the sowing period.
Collapse
Affiliation(s)
- Ioana Florescu
- Research and Development Institute for Plant Protection, Bd. Ion Ionescu de la Brad 8, 013813 Bucharest, Romania
| | - Ioan Radu
- Research and Development Institute for Plant Protection, Bd. Ion Ionescu de la Brad 8, 013813 Bucharest, Romania
| | - Andrei Teodoru
- Research and Development Institute for Plant Protection, Bd. Ion Ionescu de la Brad 8, 013813 Bucharest, Romania
| | - Lorena Gurau
- Research and Development Institute for Plant Protection, Bd. Ion Ionescu de la Brad 8, 013813 Bucharest, Romania
| | - Constantina Chireceanu
- Research and Development Institute for Plant Protection, Bd. Ion Ionescu de la Brad 8, 013813 Bucharest, Romania
| | - Florin Bilea
- Department of Plasma Physics and Nuclear Fusion, National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
| | - Monica Magureanu
- Department of Plasma Physics and Nuclear Fusion, National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
| |
Collapse
|
6
|
Doshi P, Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. PLANTS (BASEL, SWITZERLAND) 2023; 12:627. [PMID: 36771708 PMCID: PMC9921801 DOI: 10.3390/plants12030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fusarium spp. is a well-studied pathogen with the potential to infect cereals and reduce the yield to maximum if left unchecked. For decades, different control treatments have been tested against different Fusarium spp. and for reducing the mycotoxins they produce and are well documented. Some treatments also involved integrated pest management (IPM) strategies against Fusarium spp. control and mycotoxin degradation produced by them. In this review article, we compiled different control strategies against different Fusarium spp. In addition, special focus is given to the non-thermal plasma (NTP) technique used against Fusarium spp. inactivation. In a separate group, we compiled the literature about the use of NTP in the decontamination of mycotoxins produced by Fusarium spp., and highlighted the possible mechanisms of mycotoxin degradation by NTP. In this review, we concluded that although NTP is an effective treatment, it is a nice area and needs further research. The possibility of a prospective novel IPM strategy against Fusarium spp. is also proposed.
Collapse
|
7
|
Paff A, Cockburn DW. Evaluating the efficacy of non-thermal microbial load reduction treatments of heat labile food components for in vitro fermentation experiments. PLoS One 2023; 18:e0283287. [PMID: 36943858 PMCID: PMC10030034 DOI: 10.1371/journal.pone.0283287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Increasingly, in vitro simulated colon fermentations are being used as a pre-clinical step to assess the impacts of foods and drugs on the gut microbiota in a cost-effective manner. One challenge in such systems is that they are potentially susceptible to the influences of contaminating microbes in test materials. Simulated gastric and intestinal digestion can relieve some of these concerns, however, live microbes may remain that can confound analysis. Autoclave treatment of test materials is the surest way to eliminate these microbes but presents problems when using heat labile components such as resistant starch. In this study, liquid chemical sterilant alternatives to moist heat sterilization were explored for treating pulse flours for use during in vitro simulated colon fermentation. Key attributes considered in chemical selection were accessibility, impact on treated food components, and effectiveness of the treatments for reducing microbial load. Three chemicals were selected for evaluation, bleach, alcohol, and hydrogen peroxide, at varying concentrations. Flours chosen for testing were from green lentil, field pea, chickpea, or sprouted green lentil. All treatments significantly reduced microbial loads, though there were still detectable levels of microbes after alcohol treatments. Furthermore, in vitro simulated colon fermentations of the treated pulses showed minimal difference from the untreated control both in terms of microbial composition and short chain fatty acid production. Scanning electron microscopy showed minimal impact of sterilization treatments on the gross structure of the pulse flours. Together these results suggest that bleach and hydrogen peroxide treatments can be effective nonthermal treatments to eliminate contaminating microbes in pulse flours without causing significant damage to starch and other fermentable substrates. This is thus also a promising treatment method for other starchy food substrates, though further testing is required.
Collapse
Affiliation(s)
- Andrew Paff
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Darrell W Cockburn
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
8
|
Jirešová J, Scholtz V, Julák J, Šerá B. Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties. PLANTS (BASEL, SWITZERLAND) 2022; 11:1471. [PMID: 35684244 PMCID: PMC9183031 DOI: 10.3390/plants11111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Recently, much attention has been paid to the use of low-temperature plasmas and plasma-activated water (PAW) in various areas of biological research. In addition to its use in medicine, especially for low-temperature disinfection and sterilization, a number of works using plasma in various fields of agriculture have already appeared. While direct plasma action involves the effects of many highly reactive species with short lifetimes, the use of PAW involves the action of only long-lived particles. A number of articles have shown that the main stable components of PAW are H2O2, O3, HNO2, and HNO3. If so, then it would be faster and much more practical to artificially prepare PAW by directly mixing these chemicals in a given ratio. In this article, we review the literature describing the composition and properties of PAW prepared by various methods. We also draw attention to an otherwise rather neglected fact, that there are no significant differences between the action of PAW and artificially prepared PAW. The effect of PAW on the properties of wheat grains (Triticum aestivum L.) was determined. PAW exposure increased germination, shoot length, and fresh and dry shoot weight. The root length and R/S length, i.e., the ratio between the underground (R) and aboveground (S) length of the wheat seedlings, slightly decreased, while the other parameters changed only irregularly or not at all. Grains artificially inoculated with Escherichia coli were significantly decontaminated after only one hour of exposure to PAW, while Saccharomyces cerevisiae decontamination required soaking for 24 h. The differences between the PAW prepared by plasma treatment and the PAW prepared by artificially mixing the active ingredients, i.e., nitric acid and hydrogen peroxide, proved to be inconsistent and statistically insignificant. Therefore, it may be sufficient for further research to focus only on the effects of artificial PAW.
Collapse
Affiliation(s)
- Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Prague, Czech Republic;
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
9
|
Decontamination and Germination of Buckwheat Grains upon Treatment with Oxygen Plasma Glow and Afterglow. PLANTS 2022; 11:plants11101366. [PMID: 35631791 PMCID: PMC9146572 DOI: 10.3390/plants11101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Buckwheat is an alternative crop known for its many beneficial effects on our health. Fungi are an important cause of plant diseases and food spoilage, often posing a threat to humans and animals. This study reports the effects of low-pressure cold plasma treatment on decontamination and germination of common (CB) and Tartary buckwheat (TB) grains. Both plasma glow and afterglow were applied. The glow treatment was more effective in decontamination: initial contamination was reduced to less than 30% in CB and 10% in TB. Fungal diversity was also affected as only a few genera persisted after the glow treatment; however, it also significantly reduced or even ceased the germination capacity of both buckwheat species. Detailed plasma characterisation by optical spectroscopy revealed extensive etching of outer layers as well as cotyledons. Afterglow treatment resulted in a lower reduction of initial fungal contamination (up to 30% in CB and up to 50% in TB) and had less impact on fungal diversity but did not drastically affect germination: 60–75% of grains still germinated even after few minutes of treatment. The vacuum conditions alone did not affect the fungal population or the germination despite an extensive release of water.
Collapse
|
10
|
Effects of Non-Thermal Plasma Treatment on Plant Physiological and Biochemical Processes. PLANTS 2022; 11:plants11081018. [PMID: 35448746 PMCID: PMC9027939 DOI: 10.3390/plants11081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
|