1
|
Chen F, Zhou Z, Fu J, Gao C. Selenomethionine Alleviates Alcohol-Induced Liver Injury by Inhibiting Ferroptosis. Dig Dis Sci 2025:10.1007/s10620-025-08960-w. [PMID: 40029572 DOI: 10.1007/s10620-025-08960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND AND AIM Selenomethionine (Se-Met) has been reported to reduce oxidative stress (OS) and hepatic injury; however, its role in alcoholic liver disease (ALD), particularly with ferroptosis, remains poorly understood. METHODS Oxidative stress was induced using ethanol, and ferroptosis was inhibited with ferrostatin-1 (fer-1) in L-02 and LX2 cell lines, respectively. The effects of Se-Met on alcohol-induced hepatocyte damage were evaluated in vitro by examining cell viability, lipid peroxidation, and the level of key ferroptosis-associated markers. In vivo, the interaction between Se-Met and ferroptosis was examined via an ALD mouse model through analyses of liver histology, lipid peroxidation, liver function, and ferroptosis-related indices. RESULTS In vitro and in vivo experiments indicated that both Se-Met and fer-1 have a significant protective role against alcohol-induced hepatocyte death and liver injury. Treatment with Se-Met or fer-1 can promote hepatocyte proliferation, ameliorate the typical symptoms of lipid peroxidation (e.g., glutathione depletion, superoxide dismutase enzyme activity, intracellular reactive oxygen species (ROS) level, malonaldehyde (MDA) content), and altered the expression of ferroptosis-related factors. Moreover, the findings indicated that the administration of Se-Met or fer-1 significantly ameliorated the pathological alterations and improved liver function indices associated with alcohol-induced liver damage in mice. These effects may collectively suppress the deleterious impact of ethanol on hepatic tissue. CONCLUSION This study concluded that the ferroptosis pathway regulated alcohol-induced hepatocyte injury. The administration of selenomethionine protects ALD by partially inhibiting the ferroptosis pathway, providing a novel therapeutic approach for ALD.
Collapse
Affiliation(s)
- Feng Chen
- Division of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhenyuan Road, Shenzhen, 518107, China.
| | - Zhenhua Zhou
- Department of Neurology, The Air Force Hospital of Southern Theater Command, PLA, Guangzhou, 510062, China
| | - Jinxian Fu
- Division of Infectious Diseases, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chang Gao
- Division of Infectious Diseases, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Xia N, Xue H, Li Y, Liu J, Lou Y, Li S, Wang Y, Lu J, Chen X. Potential Mechanisms and Effects of Dai Bai Jie Ethanol Extract in Preventing Acute Alcoholic Liver Injury. Curr Issues Mol Biol 2024; 47:3. [PMID: 39852118 PMCID: PMC11763393 DOI: 10.3390/cimb47010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
This study investigated the protective effect of Dai Bai Jie (DBJ) extract against acute alcoholic liver injury (AALI) and elucidated its potential mechanism. The total saponin level in the DBJ extracts was measured using vanillin-chloroform acid colorimetry. To observe the preventive and protective effects of DBJ on AML-12 cells in an ethanol environment, the effective components of DBJ were identified. An alcohol-induced AALI mouse model was used to evaluate the efficacy of DBJ against AALI. For this purpose, alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) levels were assessed, liver function indices and oxidative and inflammatory markers were determined, and histopathological examinations were performed. Mechanistic investigations were conducted using RT-qPCR assays and immunohistochemical analysis to determine the protective effects of DBJ. The samples (DBJ-1, DBJ-2, and DBJ-3) were obtained by extracting DBJ with water, 50% ethanol, and 95% ethanol, yielding total saponin contents of 5.35%, 6.64%, and 11.83%, respectively. DBJ-3 was isolated and purified, and its components were identified by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). DBJ-3 had the greatest effect on cell viability in an ethanol environment. Moreover, DBJ-3 reduced inflammatory infiltration, liver cell degeneration, and hemorrhage, while increasing ADH and ALDH levels in liver tissues. Additionally, DBJ-3 considerably decreased the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and triglyceride (TG) levels. DBJ-3 reduced malondialdehyde (MDA), reactive oxygen species (ROS), and inflammatory factors, such as tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin 6 (IL-6), while increasing superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Furthermore, DBJ-3 significantly increased alcohol dehydrogenase 1b (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) expression at the gene and protein levels within alcohol metabolism pathways and reduced the nuclear factor kappa-B (NF-κB) gene and protein levels. These findings suggest that DBJ-3 can prevent AALI by enhancing alcohol metabolism via the regulation of ADH1B and ALDH2 and the modulation of the NF-κB pathway to improve antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Niantong Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Hongwei Xue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Yihang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Yang Lou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Shuyang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Yutian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Juan Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Xi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| |
Collapse
|
3
|
Chen F, Li Q, Xu X, Wang F. Selenium Attenuates Ethanol-induced Hepatocellular Injury by Regulating Ferroptosis and Apoptosis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:778-786. [PMID: 39412359 PMCID: PMC11465188 DOI: 10.5152/tjg.2024.24159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 10/20/2024]
Abstract
Ferroptosis is a newly identified type of cell death which is strongly linked to the development of several diseases. Whereas, the role of ferroptosis in the improvement of ethanol-induced hepatocytes injury by selenium has not been confirmed. In this study, an in vitro cell damage model was established using half inhibition concentration of ethanol to induce NCTC clone 1469. Cell activity, lipid peroxidation, apoptosis and the expression of markers related to ferroptosis pathway was determined. A mouse model of alcoholic liver disease (ALD) was constructed and the effectiveness of selenium and ferrostatin-1 in treating ALD in vivo was assessed by serum liver function tests, tissue staining and immunohistochemistry for ferroptosis related proteins. Pretreatment with selenomethionine and ebselen significantly improved ethanol-induced reduction in hepatocyte viability, elevated GSH levels and SOD enzyme activity, reduced MDA and iron content, while improving ethanol-induced changes in apoptosis levels and ferroptosis markers GPX4, SLC7A11, and ACSL4, with the effect of Selenomethionine being more significant. In vivo results also indicated that intervention with selenium or ferroptosis inhibitors significantly improved ethanol-induced liver tissue damage, significantly reduced serum ALT and AST levels, upregulated GPX4 and SLC7A11, but reduced ACSL4 protein levels in liver tissue. The process of ethanol damage to hepatocytes is regulated by the ferroptosis pathway. Selenium may exert a beneficial role in ethanol-induced hepatocyte injury by antagonizing oxidative stress and regulating apoptosis and ferroptosis pathways.
Collapse
Affiliation(s)
- Feng Chen
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qianhui Li
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Xu
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Rabelo ACS, Andrade AKDL, Costa DC. The Role of Oxidative Stress in Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2024; 16:1174. [PMID: 38674865 PMCID: PMC11055095 DOI: 10.3390/nu16081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1β, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
- Department of Biochemistry, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | - Daniela Caldeira Costa
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
| |
Collapse
|
5
|
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules 2023; 29:136. [PMID: 38202719 PMCID: PMC10779588 DOI: 10.3390/molecules29010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. The existing form of Se includes inorganic and organic. In contrast to the inorganic Se, which has low bioavailability and high cytotoxicity, organic Se exhibits higher bioavailability, lower toxicity, and has a more diverse composition and structure. This review presents the nutritional benefits of Se by listing and linking selenoprotein (SeP) functions to evidence of health benefits. The research status of SeP from foods in recent years is introduced systematically, particularly the sources, biochemical transformation and speciation, and the bioactivities. These aspects are elaborated with references for further research and utilization of organic Se compounds in the field of health.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
6
|
Cui X, Du M, Wei K, Dai C, Yang RYH, Zhou B, Luo Z, Yang X, Yu Y, Lin W, Wu Y, Liu Y. Study of Xuanhuang Pill in protecting against alcohol liver disease using ultra-performance liquid chromatography/time-of-flight mass spectrometry and network pharmacology. Front Endocrinol (Lausanne) 2023; 14:1175985. [PMID: 37082132 PMCID: PMC10111029 DOI: 10.3389/fendo.2023.1175985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionXuanhuang Pill (XHP) is a traditional Chinese medicine oral formula composed of 10 herbs. This study aims to verify the hepatoprotective activity of XHP and explain its possible mechanism.MethodsThe hepatoprotective activity of XHP was evaluated by constructing a mouse model of alcoholic liver disease, and the mechanism of XHP was preliminarily explained by utilizing ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-QTOF/MS), proteomics and network pharmacology.ResultsThe current study demonstrated that treatment with XHP ameliorated acute alcohol-induced liver injury in mice by significantly reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and triglycerides (TGs) and malondialdehyde (MDA) content. Remarkably, treatment also increased superoxide dismutase (SOD) activity and glutathione (GSH) content. UPLC-QTOF/MS, 199 compounds were identified as within the make-up of the XHP. Network pharmacology analysis showed that 103 targets regulated by 163 chemical components may play an important role in the protective liver effect mediated by XHP. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggest that the HIF-1, FoxO, PI3K-Akt, insulin, and thyroid hormone signaling pathways are key modulators of XHP’s effects. Finally, eight key targets including Mapk1, Mapk3, Akt1, Map2k1, Pik3ca, Pik3cg, Raf1, and Prkca were verified by molecular docking and proteomics analysis, which provide insight into the hepatoprotective effect observed with XHP treatment.ConclusionIn summary, these results improved upon knowledge of the chemical composition and the potential mechanisms of hepatoprotective action of oral XHP treatment, providing foundational support for this formulation as a viable therapeutic option for alcoholic liver disease.
Collapse
Affiliation(s)
- Xuejie Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Maobo Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Bingxue Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhaojing Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Yu
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- *Correspondence: Yuhong Liu, ; Wei Lin, ; Yi Wu,
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yuhong Liu, ; Wei Lin, ; Yi Wu,
| | - Yuhong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yuhong Liu, ; Wei Lin, ; Yi Wu,
| |
Collapse
|
7
|
Peanut Allergenicity: An Insight into Its Mitigation Using Thermomechanical Processing. Foods 2023; 12:foods12061253. [PMID: 36981179 PMCID: PMC10048206 DOI: 10.3390/foods12061253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Peanuts are the seeds of a legume crop grown for nuts and oil production. Peanut allergy has gained significant attention as a public health issue due to its increasing prevalence, high rate of sensitization, severity of the corresponding allergic symptoms, cross-reactivity with other food allergens, and lifelong persistence. Given the importance of peanuts in several sectors, and taking into consideration the criticality of their high allergic potential, strategies aiming at mitigating their allergenicity are urgently needed. In this regard, most of the processing methods used to treat peanuts are categorized as either thermal or thermomechanical techniques. The purpose of this review is to provide the reader with an updated outlook of the peanut’s allergens, their mechanisms of action, the processing methods as applied to whole peanuts, as well as a critical insight on their impact on the allergenicity. The methods discussed include boiling, roasting/baking, microwaving, ultrasonication, frying, and high-pressure steaming/autoclaving. Their effectiveness in alleviating the allergenicity, and their capacity in preserving the structural integrity of the treated peanuts, were thoroughly explored. Research data on this matter may open further perspectives for future relevant investigation ultimately aiming at producing hypoallergenic peanuts.
Collapse
|
8
|
Shen Y, Huang H, Wang Y, Yang R, Ke X. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol 2022; 74:127048. [PMID: 35963055 DOI: 10.1016/j.jtemb.2022.127048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Oxidative damage induced by ethanol and its metabolites is one of the factors that fuels the development of alcoholic liver disease (ALD). Selenium (Se) is an effective cofactor for glutathione peroxidase (GPx), and has antioxidant effects that improve ALD. In patients with ALD, ethanol-induced oxidative damage inhibits the synthesis of related Se-containing proteins such as: selenoprotein P (Sepp1), albumin (ALB), and GPx in the liver, thus decreasing the overall Se level in patients. Both Se deficiency and excess can affect the expression of GPx, resulting in damage to the antioxidant defense system. This damage enhances oxidative stress by increasing the levels of reactive oxygen species (ROS) in the body, which aggravates the inflammatory response, lipid metabolism disorder, and lipid peroxidation and worsens ALD symptoms. A cascade of oxidative damages caused by ALD will deplete selenium deposition in the body, stimulate the expression of Gpx1, Sepp1, and Gpx4, and thus mobilize systemic selenoproteins, which can restore GPx activity in the hepatocytes of ALD patients, reduce the levels of reactive oxygen species and alleviate oxidative stress, the inflammatory response, lipid metabolism disorder, and lipid peroxidation, thus helping to mitigate ALD. This review provides a reference for future ALD studies that evaluate the regulation of Se levels and contributes to studies on the potential pathological mechanisms of Se imbalance in ALD.
Collapse
Affiliation(s)
- Yingyan Shen
- Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial, Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu University of Traditional Chinese Medicine, Chendu, China
| | - Hanmei Huang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rongping Yang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China.
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Han M, Liu K. Selenium and selenoproteins: their function and development of selenium‐rich foods. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengqing Han
- School of Food and Strategic Reserves Henan University of Technology 450001 Zhengzhou China
- College of Food Science and Engineering Henan University of Technology 450001 Zhengzhou China
| | - Kunlun Liu
- School of Food and Strategic Reserves Henan University of Technology 450001 Zhengzhou China
- College of Food Science and Engineering Henan University of Technology 450001 Zhengzhou China
| |
Collapse
|
10
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
11
|
Ojeda ML, Nogales F, Del Carmen Gallego-López M, Carreras O. Binge drinking during the adolescence period causes oxidative damage-induced cardiometabolic disorders: A possible ameliorative approach with selenium supplementation. Life Sci 2022; 301:120618. [PMID: 35533761 DOI: 10.1016/j.lfs.2022.120618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| |
Collapse
|