1
|
Monica S, Bancalari E, Siroli L, Tekiner IH, Tainsa M, Ennahli S, Bertani G, Gatti M. Lactic acid fermentation of non-conventional plant-based protein extract. Food Res Int 2025; 208:116174. [PMID: 40263788 DOI: 10.1016/j.foodres.2025.116174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The increasing demand for plant-based foods necessitates the development of effective preservation methods to ensure safety and quality. This study evaluated the effectiveness of biopreservation using eight plant-based protein extracts (PBPEs) (pea, faba, soy, potato, pumpkin, hazelnuts, rice, and hemp) fermented with 12 different lactic acid bacteria (LAB) strains from four species. The effectiveness of LAB biopreservation was assessed both at the endpoint and in real-time using impedometric analysis and was found to depend on both the matrix and the strain. Among the 12 LAB strains, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus showed the highest adaptability, particularly in soy, faba, and hemp protein extracts, highlighting their potential as effective biopreservative agents for diverse PBPEs. Given the distinctive advantage of biopreservation in enhancing organoleptic properties, this aspect was also evaluated for the two most effective LAB strains. Fermentation with L. delbrueckii subsp. bulgaricus 1932 and L. plantarum 4193 significantly improved the aroma profile of fermented PBPEs (pea, faba, soy, pumpkin, rice, and hemp) where they exhibited the best adaptability. Notably, levels of hexanal and hexanoic acid, compounds often associated with off-flavors, were markedly reduced, enhancing the organoleptic properties of the final products. These findings emphasize the dual benefits of LAB fermentation as a natural preservative and flavor enhancer, with promising implications for its application in the food industry.
Collapse
Affiliation(s)
- Saverio Monica
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy.
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Ismail Hakkı Tekiner
- Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Istanbul 34303, Türkiye
| | - Marwa Tainsa
- Department of Agroalimentary, Saad Dahleb University, BP-270 Blida, Algeria
| | - Said Ennahli
- National School of Agriculture of Meknes, Meknes, Morocco
| | - Gaia Bertani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| |
Collapse
|
2
|
Ciccone M, Khan MR, Hernandez JBM, Njieukam JA, Siroli L, Gottardi D, Lanciotti R, Rocculi P, Patrignani F. Release of Biopolymers from Saccharomyces cerevisiae Biomass Through Thermal and Non-Thermal Technologies. Microorganisms 2024; 12:2596. [PMID: 39770797 PMCID: PMC11677850 DOI: 10.3390/microorganisms12122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Components of yeast cell walls, such as β-glucans and mannoproteins, show promise for developing sustainable biopolymers for food packaging. Efficient extraction, however, is challenging due to the complexity of the yeast cell wall. This study explored high-pressure homogenisation (HPH) and pulsed electric fields (PEFs), alone and with heat treatment (TT), on bakery yeast (BY) and brewery spent yeast (BSY) biomasses. In the treated samples we assessed carbohydrates, proteins, β-glucans, and mannoproteins and evaluated cell wall disruption microscopically. HPH caused complete cell disintegration, enhancing intracellular release, while PEF primarily permeabilised the membranes. Combined HPH and PEF treatments significantly increased cell wall stress, leading to partial disintegration. Notably, the β-glucans released reached 3.90 g/100 g dry matter in BY and 10.44 g/100 g dry matter in BSY, demonstrating significant extraction improvements. These findings highlight the potential of HPH and PEF for enhancing β-glucan recovery from yeast biomass, offering a promising route for sustainable biopolymer production for food packaging.
Collapse
Affiliation(s)
- Marianna Ciccone
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
| | - Muhammad Rehan Khan
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
| | - Junior Bernardo Molina Hernandez
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
| | - Joel Armando Njieukam
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (M.R.K.); (J.B.M.H.); (J.A.N.); (L.S.); (D.G.); (R.L.); (P.R.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
3
|
Ratajczak K, Piotrowska-Cyplik A, Cyplik P. Analysis of the Effect of Various Potential Antimicrobial Agents on the Quality of the Unpasteurized Carrot Juice. Molecules 2023; 28:6297. [PMID: 37687126 PMCID: PMC10488548 DOI: 10.3390/molecules28176297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Short shelf-life and poor microbial quality of minimally processed foods of plant origin pose a serious problem for the food industry. Novel techniques of minimal treatment combined with disinfection are being researched, and, for fresh juice, the addition of antimicrobial agents appears to be a promising route. In this research, fresh, nonfiltered, unpasteurized carrot juice was mixed with four potential antimicrobials (bourbon vanilla extract, peppermint extract, cannabidiol oil, and grapefruit extract). All four variants and the reference pure carrot juice were analyzed for metapopulational changes, microbial changes, and physicochemical changes. The potential antimicrobials used in the research have improved the overall microbial quality of carrot juice across 4 days of storage. However, it is important to notice that each of the four agents had a different spectrum of effectiveness towards the groups identified in the microflora of carrot juice. Additionally, the antimicrobials have increased the diversity of the carrot juice microbiome but did not prevent the occurrence of pathogenic bacteria. In conclusion, the use of antimicrobial agents such as essential oils or their derivatives may be a promising way of improving the microbial quality and prolonging the shelf-life of minimally processed foods, such as fresh juices, but the technique requires further research.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Agnieszka Piotrowska-Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Paweł Cyplik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland;
| |
Collapse
|
4
|
Miller FA, Brandão TRS, Silva CLM. New Approaches for Improving the Quality of Processed Fruits and Vegetables and Their By-Products. Foods 2023; 12:foods12071353. [PMID: 37048174 PMCID: PMC10093689 DOI: 10.3390/foods12071353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
The 2030 Sustainable Development Agenda calls for all social actors to contribute to significant societal and environmental issues [...].
Collapse
Affiliation(s)
- Fátima A Miller
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Teresa R S Brandão
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristina L M Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
5
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Sublethal HPH treatment is a sustainable tool that induces autolytic-like processes in the early gene expression of Saccharomyces cerevisiae. Food Res Int 2022; 159:111589. [DOI: 10.1016/j.foodres.2022.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
|