1
|
Haq M, Ali MS, Park JS, Kim JW, Zhang W, Chun BS. Atlantic salmon (Salmo salar) waste as a unique source of biofunctional protein hydrolysates: Emerging productions, promising applications, and challenges mitigation. Food Chem 2025; 462:141017. [PMID: 39216379 DOI: 10.1016/j.foodchem.2024.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The Atlantic salmon is an extremely popular fish for its nutritional value and unique taste among several fish species. Researchers are focusing on the utilization of Atlantic salmon waste for generating protein hydrolysates rich in peptides and amino acids and investigating their health benefits. Several technological approaches, including enzymatic, chemical, and the recently developed subcritical water hydrolysis, are currently used for the production of Atlantic salmon waste protein hydrolysates. Hydrolyzing various wastes, e.g., heads, bones, skin, viscera, and trimmings, possessing antioxidant, blood pressure regulatory, antidiabetic, and anti-inflammatory properties, resulting in applications in human foods and nutraceuticals, animal farming, pharmaceuticals, cell culture, and cosmetics industries. Furthermore, future applications, constraints several challenges associated with industrial hydrolysate production, including sensory, safety, and economic constraints, which could be overcome by suggested techno processing measures. Further studies are recommended for developing large-scale, commercially viable production methods, focusing on eradicating sensory constraints and facilitating large-scale application.
Collapse
Affiliation(s)
- Monjurul Haq
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Kumoro AC, Wardhani DH, Kusworo TD, Djaeni M, Azis YMF, Alhanif M, Ping TC. Ultrasound pretreatment and solvent extraction parameters effects on the nutritional characteristics of Indonesian shortfin eel ( Anguilla bicolor bicolor) protein concentrate. Food Chem X 2025; 25:102103. [PMID: 39810951 PMCID: PMC11732468 DOI: 10.1016/j.fochx.2024.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Protein concentrate (PC) is a potential solution to address the global protein shortage, with Indonesian shortfin eel being a suitable raw material. This research investigates the impact of ultrasound pretreatment and extraction parameters on the nutritional quality of eel protein concentrate (EPC). The study involved ultrasonic pretreatment at different times and power, and solvent extraction with different solvents, temperature, and solvent-solid-feed-ratio (SSFR). The results showed that the recommended conditions for EPC preparation were a mixture of ethanol-hexane, ultrasonic pretreatment at 250 W for 25 min, extraction temperature and SSFR of 40 °C and 6:1 v/w. The protein content of EPC increased gradually with the increase of SSFR until it reached a ratio of 6:1, further increase in SSFR promoted the development of a pseudo-homogeneous system, leading to a reduction in the solvent-eel flesh contact and the relative velocity between the extracting solvent and eel flesh, and consequently decreased the extraction yield. The prepared EPC is classified as type B EPC, with a protein content of 89.62 %w.b. and a lipid content of 2.21 %w.b. The EPC contains five types of peptides with a molecular weight of 5.00-76.00 kDa, with the main fraction having a MW ranging from 10.00 to 15.00 kDa, indicating potential for functional food products.
Collapse
Affiliation(s)
- Andri Cahyo Kumoro
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Dyah Hesti Wardhani
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Mohamad Djaeni
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | | | - Misbahudin Alhanif
- Chemical Engineering Study Program, Faculty of Industrial Technology, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Tan Chin Ping
- Department of Food Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
3
|
Qiao K, Huang Q, Sun T, Chen B, Huang W, Su Y, Lin H, Liu Z. Preparation and Efficacy Evaluation of Antihyperuricemic Peptides from Marine Sources. Nutrients 2024; 16:4301. [PMID: 39770922 PMCID: PMC11678060 DOI: 10.3390/nu16244301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Marine-derived foods, often called blue foods, are promising sustainable alternatives to conventional food sources owing to their abundant amino acids and high protein content. Current treatments for hyperuricemia, a chronic condition attributed to purine metabolism disorders, are associated with various side effects. Novel peptide xanthine oxidase inhibitors have been discovered in the hydrolyzed products of marine fish and invertebrate proteins, which have demonstrated promising therapeutic potential by reducing uric acid levels in vitro and in vivo. This review explores the potential therapeutic effects of xanthine oxidase inhibitors derived from marine fish and invertebrates, summarizes the methods for extracting bioactive peptides from marine organisms, and emphasizes the impact of different proteases on the structure-activity relationship of bioactive peptides. The hypouricemic effects of these bioactive peptides warrant further verification. There is consensus on the in vitro chemical methods used to verify the xanthine oxidase inhibitory effects of these peptides. Considering several cell and animal model development strategies, this review summarizes several highly recognized modeling methods, proposes strategies to improve the bioavailability of bioactive peptides, and advocates for a diversified evaluation system. Although the screening and evaluation methods for antihyperuricemic peptides have been shown to be feasible across numerous studies, they are not optimal. This review examines the deficiencies in bioavailability, synthesis efficiency, and evaluation mechanisms in terms of their future development and proposes potential solutions to address these issues. This review provides a novel perspective for the exploration and application of marine-derived hypouricemic bioactive peptides.
Collapse
Affiliation(s)
- Kun Qiao
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Qiongmei Huang
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Tongtong Sun
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Wenmei Huang
- Xiamen Daozhiyuan Biological Technology Co., Ltd., Xiamen 361024, China;
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Hetong Lin
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
| | - Zhiyu Liu
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| |
Collapse
|
4
|
Torres B, Pérez A, García P, Jiménez P, Abrigo K, Valencia P, Ramírez C, Pinto M, Almonacid S, Ruz M. Fish Bones as Calcium Source: Bioavailability of Micro and Nano Particles. Foods 2024; 13:1840. [PMID: 38928782 PMCID: PMC11203225 DOI: 10.3390/foods13121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The amount of by-products/waste in the fish industry is roughly 50%. Fish bones could be used to produce nanoparticles, which may have potential use in the food industry as a novel calcium source and at the same time, contribute to reduce waste production. The objective of this study was to evaluate the bioavailability of nano-size salmon fish bone particles compared to micro-size salmon fish bone particles, and calcium carbonate. The study was carried out in 21-28-day-old C57BL/6 male mice fed for 21 days with the experimental diets. The groups were as follows: CaCO3 0.5% Ca (CN 0.5); CaCO3 1.0% Ca (CN 1.0); salmon fish bone (SFB) microparticles 0.5% Ca (MP 0.5); SFB microparticles 1.0% Ca (MP 1.0); SFB nanoparticles 0.5% Ca (NP 0.5); and SFB nanoparticles 1.0% Ca (NP 1.0). Calcium bioavailability, defined as the percent calcium in femur showed an increasing trend from CN 0.5 to NP 1.0 group. According to ANCOVA, the greatest Ca content was observed in the NP 1.0 group compared with all groups but NP 0.5. In conclusion, in a murine model, salmon fish bone nanoparticles present higher calcium bioavailability than salmon fish bone microparticles, and both, in turn, have better bioavailability than calcium carbonate.
Collapse
Affiliation(s)
- Benjamín Torres
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Alvaro Pérez
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Paula García
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Paula Jiménez
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Karen Abrigo
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Pedro Valencia
- Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
| | - Cristian Ramírez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (C.R.); (M.P.); (S.A.)
| | - Marlene Pinto
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (C.R.); (M.P.); (S.A.)
| | - Sergio Almonacid
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (C.R.); (M.P.); (S.A.)
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| |
Collapse
|
5
|
Matamala C, Garcia P, Valencia P, Perez A, Ruz M, Sanhueza L, Almonacid S, Ramirez C, Pinto M, Jiménez P. Valorization of the Salmon Frame as a High-Calcium Ingredient in the Formulation of Nuggets: Evaluation of the Nutritional and Sensory Properties. Foods 2024; 13:1701. [PMID: 38890929 PMCID: PMC11171980 DOI: 10.3390/foods13111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
In the Chilean population, calcium consumption is deficient. Therefore, several strategies have been implemented to increase calcium intake, such as consuming dairy products and supplements. In this study, an ingredient composed of bone flour (BF) and protein hydrolysate (PH) obtained from salmon frame was used as an innovative source of calcium. The objective was to evaluate the effect of the incorporation of BF and PH in a 1:1 ratio (providing two calcium concentrations to the nuggets, 75 and 125 mg/100 g) on calcium content and sensory attributes of salmon nuggets submitted to baking or shallow frying. Proximal chemical analyses, fatty acid composition, calcium content, and sensory evaluation (acceptability and check-all-that-apply test) were tested in the nuggets. The incorporation of BF/PH (1:1) in both concentrations increased the calcium content of salmon nuggets being higher for the 125 mg/100 g. On the other hand, no negative effects were observed on sensory properties where all samples showed good overall acceptability for baked and fried nuggets. Therefore, the incorporation of BF/PH (1:1) into salmon nuggets enhances the nutritional quality of these products by providing a higher calcium content without significantly affecting their sensory properties.
Collapse
Affiliation(s)
- Camila Matamala
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago 8380000, Chile;
| | - Paula Garcia
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.G.); (A.P.); (M.R.); (L.S.)
| | - Pedro Valencia
- Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa Maria, Valparaíso 2390123, Chile; (P.V.); (S.A.); (C.R.); (M.P.)
| | - Alvaro Perez
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.G.); (A.P.); (M.R.); (L.S.)
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.G.); (A.P.); (M.R.); (L.S.)
| | - Leyla Sanhueza
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.G.); (A.P.); (M.R.); (L.S.)
| | - Sergio Almonacid
- Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa Maria, Valparaíso 2390123, Chile; (P.V.); (S.A.); (C.R.); (M.P.)
| | - Cristian Ramirez
- Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa Maria, Valparaíso 2390123, Chile; (P.V.); (S.A.); (C.R.); (M.P.)
| | - Marlene Pinto
- Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa Maria, Valparaíso 2390123, Chile; (P.V.); (S.A.); (C.R.); (M.P.)
| | - Paula Jiménez
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.G.); (A.P.); (M.R.); (L.S.)
| |
Collapse
|
6
|
Nuñez SM, Valencia P, Solís T, Valdivia S, Cárdenas C, Guzman F, Pinto M, Almonacid S. Enzymatic Hydrolysis of Salmon Frame Proteins Using a Sequential Batch Operational Strategy: An Improvement in Water-Holding Capacity. Foods 2024; 13:1378. [PMID: 38731749 PMCID: PMC11083037 DOI: 10.3390/foods13091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The meat industry uses phosphates to improve the water-holding capacity (WHC) of meat products, although excess phosphates can be harmful to human health. In this sense, protein hydrolysates offer an alternative with scientific evidence of improved WHCs. Salmon frames, a byproduct rich in protein, must be processed for recovery. Enzymatic technology allows these proteins to be extracted from muscle, and the sequential batch strategy significantly increases protein nitrogen extraction. This study focused on evaluating the WHC of protein hydrolysates from salmon frames obtained through double- and triple-sequential batches compared to conventional hydrolysis. Hydrolysis was carried out for 3 h at 55 °C with 13 mAU of subtilisin per gram of salmon frames. The WHC of each hydrolysate was measured as the cooking loss using concentrations that varied from 0 to 5% (w/w) in the meat matrix. Compared with those obtained through conventional hydrolysis, the hydrolysates obtained through the strategy of double- and triple-sequence batches demonstrated a 55% and 51% reduction in cooking loss, respectively, when they were applied from 1% by weight in the meat matrix. It is essential to highlight that all hydrolysates had a significantly lower cooking loss (p ≤ 0.05) than that of the positive control (sodium tripolyphosphate [STPP]) at its maximum allowable limit when applied at a concentration of 5% in the meat matrix. These results suggest that the sequential batch strategy represents a promising alternative for further improving the WHC of hydrolysates compared to conventional hydrolysis. It may serve as a viable substitute for polyphosphates.
Collapse
Affiliation(s)
- Suleivys M. Nuñez
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Pedro Valencia
- Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
| | - Tamara Solís
- Programa de Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (T.S.); (S.V.)
| | - Silvana Valdivia
- Programa de Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (T.S.); (S.V.)
| | - Constanza Cárdenas
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (C.C.); (F.G.)
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (C.C.); (F.G.)
| | - Marlene Pinto
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (M.P.); (S.A.)
| | - Sergio Almonacid
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (M.P.); (S.A.)
| |
Collapse
|
7
|
Wang K, Ni J, Tian X, Xiang S, Li H, Shang W, Liu B, Tan M, Su W. Survivability of probiotics in Pickering emulsion gels stabilized by salmon by-product protein / sodium alginate soluble complexes at neutral pH. Int J Biol Macromol 2024; 255:128190. [PMID: 37979738 DOI: 10.1016/j.ijbiomac.2023.128190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Adequate amounts of live probiotics reaching the gut are necessary to maintain host health. However, the harsh environment during processing, the low pH of human gastric acid, and the high concentration of bile salts in the gut can significantly reduce survivability of probiotics. In this work, we propose a simple Pickering emulsion gels strategy to encapsulate Lactobacillus plantarum Lp90 into oil droplets filled in calcium alginate gels to improve its viability under pasteurization and gastrointestinal conditions. The emulsion gels were stabilized by the soluble complexes of salmon by-product protein (SP) and sodium alginate (ALG), and the aqueous phase was solidified by the addition of calcium. The interaction between SP and ALG and the effect of ALG concentration on emulsifying ability and emulsion stability were studied. The results from optical imaging, nuclear magnetic resonance, and rheological properties showed that the stability and viscosity of the emulsions gradually increased with the increased ALG concentration, while the droplet size of the emulsions and the content of free water in the system decreased significantly. Especially when the concentration of ALG was 1 %, the emulsion system was stable under the environment of high temperature and high ionic strength, and the water holding capacity was the highest. Through pasteurization and gastrointestinal digestion experiments, it was found that the survival rate of probiotics encapsulated in emulsion gels was significantly higher than that encapsulated in emulsions or hydrogels, which benefited from the dual action of oil droplets and calcium alginate gels network. These results provide a new strategy for the processing of probiotics and the high-value utilization of marine fish by-products.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jialu Ni
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueying Tian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wenbo Shang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bo Liu
- Dalian Rich Foods Co.,Ltd, Dalian 116113, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
8
|
Wang K, Huang S, Xing S, Wu S, Li H, Zhong X, Na X, Tan M, Su W. On-Chip Precisely Controlled Preparation of Uniform Core-Shell Salmon Byproduct Protein/Polysaccharide Microcapsules for Enhancing Probiotic Survivability in Fruit Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16702-16714. [PMID: 37885404 DOI: 10.1021/acs.jafc.3c05373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing demand for probiotic-fortified fruit juices stems from the dietary requirements of individuals with dairy allergies, lactose intolerance, and vegetarian diets. However, a notable obstacle arises from the degradation of probiotics in fruit juices due to their low pH levels and harsh gastrointestinal conditions. In response, this study proposes an innovative approach utilizing a microfluidic chip to create core-shell microcapsules that contain Lactobacillus plantarum Lp90. This method, based on internal-external gelation, forms highly uniform microcapsules that fully enclose the core, which consists of oil-in-water Pickering emulsions stabilized by salmon byproduct protein and sodium alginate. These emulsions remain stable for up to 72 h at a 1% sodium alginate concentration. The shell layer incorporates kelp nanocellulose and sodium alginate, thus improving the thermal properties. Furthermore, compared to free probiotics, the multilayer structure of the core-shell microcapsules provides a robust barrier, resulting in significantly enhanced probiotic stability. These findings introduce a novel strategy for augmenting probiotic delivery in functional fruit juice beverages, promising solutions to the challenges encountered during their development.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shida Wu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Xu Zhong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Xin Na
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| |
Collapse
|
9
|
Formation of Oxidative Compounds during Enzymatic Hydrolysis of Byproducts of the Seafood Industry. Processes (Basel) 2023. [DOI: 10.3390/pr11020543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
There is a significant potential to increase the sustainability of the fishing and aquaculture industries through the maximization of the processing of byproducts. Enzymatic hydrolysis provides an opportunity to valorize downstream fish industry byproducts for the production of protein hydrolysates (FPH) as a source of bioactive peptides (BAP) with health benefits. Deteriorative oxidative reactions may occur during the enzymatic hydrolysis of byproducts, influencing the safety or bioactivities of the end product. Lipid oxidation, autolysis mediated by endogenous enzymes in viscera, protein degradation, and formation of low-molecular-weight metabolites are the main reactions that are expected to occur during hydrolysis and need to be controlled. These depend on the freshness, proper handling, and the type of byproducts used. Viscera, frames, trimmings, and heads are the byproducts most available for enzymatic hydrolysis. They differ in their composition, and, thus, require standardization of both the hydrolysis procedures and the testing methods for each source. Hydrolysis conditions (e.g., enzyme type and concentration, temperature, and time) also have a significant role in producing FPH with specific structures, stability, and bioactivity. Protein hydrolysates with good safety and quality should have many applications in foods, nutraceuticals, and pharmaceuticals. This review discusses the oxidative reactions during the enzymatic hydrolysis of byproducts from different fish industry sectors and possible ways to reduce oxidation.
Collapse
|
10
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Difonzo G, Grassi S, Paciulli M. Upcycling of Agro-Food Chain By-Products to Obtain High-Value-Added Foods. Foods 2022; 11:foods11142043. [PMID: 35885286 PMCID: PMC9319310 DOI: 10.3390/foods11142043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70121 Bari, Italy
- Correspondence:
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Giovanni Celoria 2, 20133 Milan, Italy;
| | - Maria Paciulli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy;
| |
Collapse
|