1
|
Zheng Y, An S, Kim GY, Park GD, Yoo BH, Kim KN, Lee TK. Treatment with soybean lecithin-derived α-GPC (SHCog™) improves scopolamine-induced cognitive declines in mice via regulating cholinergic neurotransmission and enhancing neural plasticity in the hippocampus. Tissue Cell 2025; 93:102705. [PMID: 39765138 DOI: 10.1016/j.tice.2024.102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025]
Abstract
Mild cognitive impairment is a diagnostic category marked by declines in memory and cognitive function that are less severe than those observed in Alzheimer's disease. Previous studies have indicated that individuals with mild cognitive impairment have an elevated risk of progressing to Alzheimer's disease. The hippocampus is well known to play pivotal roles in memory and cognitive functions. Scopolamine (Sco) disrupts cholinergic neurotransmission in the hippocampus and triggers functional declines in memory and cognition. SHCog™ is a commercially available alpha glycerophosphorylcholine (α-GPC) derived from soybean lecithin. The objective of the present study was to examine whether SHCog™ can alleviate memory and cognitive dysfunctions in a mouse model of cognitive impairments induced by Sco. In this study, C57BL/6 J mice were subjected to the passive avoidance and Morris water maze tests to investigate short-term and spatial memory functions, respectively. This study also examined cellular morphology and distribution by cresyl violet staining and investigated changes in acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) as cholinergic enzymes through immunohistochemical staining of the hippocampus. Additionally, we examined changes in postsynaptic density protein 95 (PSD-95) and brain-derived neurotrophic factor (BDNF) related to neural plasticity in the hippocampus. Treatment with SHCog™ (125 mg/kg and 250 mg/kg) brought functional recovery in short-term and spatial memory against Sco-induced memory and cognitive impairments. Changes in cellular morphology and distribution in the hippocampus were not detected following the administration of Sco and/or SHCog™. Treatment with SHCog™ reduced AChE elevated by Sco, whereas SHCog™ administration increased ChAT decreased by Sco. Furthermore, SHCog™ restored PSD-95 and BDNF in the mouse hippocampus reduced by Sco. Specifically, SHCog™ modulated cholinergic neurotransmission and enhanced neural plasticity in the hippocampus. Taken together, we suggest that SHCog™ can be a valuable ingredient in functional foods or supplements for improving memory and cognitive functions.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - SoEun An
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ga-Yeon Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Geum Duck Park
- Suheung Research Center, Seongnam 13488, Republic of Korea
| | - Byong Ho Yoo
- Pharmirae Co., Ltd., Seongnam 13112, Republic of Korea
| | - Ki Nam Kim
- HSBio Co., Ltd., Jincheon 27850, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
2
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Comprehension of gut microbiota and microRNAs may contribute to the development of innovative treatment tactics against metabolic disorders and psychiatric disorders. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:111-125. [PMID: 39850247 PMCID: PMC11751546 DOI: 10.62347/wazh2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Metabolic syndrome is a group of pathological disorders increasing the risk of serious diseases including cardiovascular disease, stroke, type 2 diabetes. Global widespread of the metabolic syndrome has put a heavy social burden. Interestingly, a crucial link between the metabolic syndrome and a psychiatric disorder may frequently coexist, in which certain shared mechanisms might play a role for the pathogenesis. In fact, some microRNAs (miRNAs) have been detected in the overlap pathology, suggesting a common molecular mechanism for the development of both disorders. Subsequent studies have revealed that these miRNAs and several metabolites of gut microbiota such as short chain fatty acids (SCFAs) might be involved in the development of both disorders, in which the association between gut and brain might play key roles with engram memory for the modulation of immune cells. Additionally, the correlation between brain and immunity might also influence the development of several diseases/disorders including metabolic syndrome. Brain could possess several inflammatory responses as an information of pathological images termed engrams. In other words, preservation of the engram memory might be achieved by a meta-plasticity mechanism that shapes the alteration of neuron linkages for the development of immune-related diseases. Therefore, it might be rational that metabolic syndrome and psychiatric disorders may belong to a group of immune-related diseases. Disrupting in gut microbiota may threaten the body homeostasis, leading to initiate a cascade of health problems. This concept may contribute to the development of superior therapeutic application with the usage of some functional components in food against metabolic and psychiatric disorders. This paper reviews advances in understanding the regulatory mechanisms of miRNAs with the impact to gut, liver and brain, deliberating the probable therapeutic techniques against these disorders.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
3
|
Torrecillas-Lopez M, Rivero-Pino F, Trigo P, Toscano-Sanchez R, Gonzalez-de la Rosa T, Villanueva A, Millan-Linares MC, Montserrat-de la Paz S, Claro-Cala CM. Immunomodulatory properties of hempseed oligopeptides in an LRRK2-associated Parkinson's disease animal model. Food Funct 2024; 15:11115-11128. [PMID: 39435853 DOI: 10.1039/d4fo03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with genetic factors like mutations in the LRRK2 gene being a key cause of late-onset autosomal dominant parkinsonism. Nutritional strategies, such as using bioactive peptides with anti-inflammatory properties from sources like hemp protein, are gaining interest as an alternative to pharmacological therapies. In this study, we used an LRRK2-associated PD mouse model to test the efficacy of a hempseed protein hydrolysate (HPH60A + 15F) with antioxidant and anti-inflammatory properties. Mice were given HPH60A + 15F (10 mg kg-1 day-1) orally for 7 days. After treatment, brain tissue and macrophages were analyzed to assess neuroinflammation markers. Additionally, the neuroavailable peptidome was characterized using an in vitro model simulating the intestinal and blood-brain barriers. The oral treatment has been shown to reduce protein aggregates of α-syn, CD68, iNOS, and COX2 in the brain. The treatment also significantly lowered TNF-α gene expression in the striatum, with a notable reduction in the gene expression of other pro-inflammatory cytokines in bone marrow-derived macrophages (BMDMs), such as IL-1β or IL-6. The peptide TVTAMNVVYALK was proposed as a potential highly active peptide, able to exert anti-inflammatory effects in the brain. The results have shown that HPH60A + 15F is capable of alleviating neuroinflammation by reducing the expression of pro-inflammatory cytokines, which could have promising effects in PD.
Collapse
Affiliation(s)
- Maria Torrecillas-Lopez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy
| | - Paula Trigo
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Rocio Toscano-Sanchez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Alvaro Villanueva
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - M Carmen Millan-Linares
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Carmen M Claro-Cala
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| |
Collapse
|
4
|
Li Q, Ma H, Min W, Wang Y, Zhao R, Zhou Y, Tan Y, Luo Y, Hong H. Recent advances in fish cutting: From cutting schemes to automatic technologies and internet of things innovations. Compr Rev Food Sci Food Saf 2024; 23:e70039. [PMID: 39495567 DOI: 10.1111/1541-4337.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 11/06/2024]
Abstract
Fish-cutting products are widely loved by consumers due to the unique nutrient composition and flavor in different cuts. However, fish-cutting faces the issue of labor shortage due to the harsh working environment, huge workload, and seasonal work. Hence, some automatic, efficient, and large-scale cutting technologies are needed to overcome these challenges. Accompanied by the development of Industry 4.0, the Internet of Things (IoT), artificial intelligence, big data, and blockchain technologies are progressively applied in the cutting process, which plays pivotal roles in digital production monitoring and product safety enhancement. This review focuses on the main fish-cutting schemes and delves into advanced automatic cutting techniques, showing the latest technological advancements and how they are revolutionizing fish cutting. Additionally, the production monitoring architecture based on IoT in the fish-cutting process is discussed. Fish cutting involves a variety of schemes tailored to the specific characteristics of each fish cut. The cutting process includes deheading and tail removal, filleting, boning, skinning, trimming, and bone inspection. By incorporating sensors, machine vision, deep learning, and advanced cutting tools, these technologies are transforming fish cutting from a manual to an automated process. This transformation has significant practical implications for the industry, offering improved efficiency, consistent product quality, and enhanced safety, ultimately providing a modernized manufacturing approach to fish-cutting automation within the context of Industry 4.0.
Collapse
Affiliation(s)
- Qing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Weiqing Min
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Ran Zhao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Yongjie Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Ji J, Yi X, Gao X, Wang B, Zhang X, Shen X, Xia G. Synergistic effects of tilapia head protein hydrolysate and walnut protein hydrolysate on the amelioration of cognitive impairment in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5419-5434. [PMID: 38334319 DOI: 10.1002/jsfa.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Ji
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Xiangzhou Yi
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xia Gao
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Bohui Wang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xueying Zhang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Guanghua Xia
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
6
|
Zhang L, Bai YY, Hong ZS, Xie J, Tian Y. Isolation, Identification, Activity Evaluation, and Mechanism of Action of Neuroprotective Peptides from Walnuts: A Review. Nutrients 2023; 15:4085. [PMID: 37764868 PMCID: PMC10534798 DOI: 10.3390/nu15184085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
As human life expectancy increases, the incidence of neurodegenerative diseases in older adults has increased in parallel. Walnuts contain bioactive peptides with demonstrated neuroprotective effects, making them a valuable addition to the diet. We here present a comprehensive review of the various methods used to prepare, isolate, purify, and identify the neuroprotective peptides found in walnuts. We further summarise the different approaches currently used to evaluate the activity of these peptides in experimental settings, highlighting their potential to reduce oxidative stress, neuroinflammation, and promote autophagy, as well as to regulate the gut microflora and balance the cholinergic system. Finally, we offer suggestions for future research concerning bioavailability and improving or masking the bitter taste and sensory properties of final products containing the identified walnut neuroprotective peptides to ensure successful adoption of these peptides as functional food ingredients for neurohealth promotion.
Collapse
Affiliation(s)
- Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
7
|
Whey Protein Hydrolysate Renovates Age-Related and Scopolamine-Induced Cognitive Impairment. Nutrients 2023; 15:nu15051228. [PMID: 36904228 PMCID: PMC10005054 DOI: 10.3390/nu15051228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Whey protein and its hydrolysates are ubiquitously applied in the food system. However, their effect on cognitive impairment remains unclear. This study aimed to investigate the potential ability of whey protein hydrolysate (WPH) to ameliorate cognitive degeneration. WPH intervention in Crl:CD1 (ICR, Institute for cancer research) mice and aged C57BL/6J mice in a scopolamine-induced cognitive impairment model for 10 days were evaluated. Behavioral tests indicated that WPH intervention improved the cognitive abilities in ICR and aged C57BL/6J mice (p < 0.05). Scopolamine enhanced the Aβ1-42 level in the brain tissue, and the WPH intervention exhibited a similar therapeutic effect to donepezil in ICR mice. A noticeable reduction occurred in serum Aβ1-42 level of aged mice treated with WPH. The histopathological study of the hippocampus showed that WPH intervention alleviates neuronal damage. Hippocampus proteomic analysis suggested possible mechanisms of WPH action. The relative abundance of Christensenellaceae, a gut microbe related to Alzheimer's disease, was altered by WPH intervention. This study demonstrated that short-term WPH intake protected against memory impairment induced by scopolamine and aging.
Collapse
|
8
|
Park S, Wu X. Modulation of the Gut Microbiota in Memory Impairment and Alzheimer's Disease via the Inhibition of the Parasympathetic Nervous System. Int J Mol Sci 2022; 23:13574. [PMID: 36362360 PMCID: PMC9657043 DOI: 10.3390/ijms232113574] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota has been demonstrated to play a critical role in maintaining cognitive function via the gut-brain axis, which may be related to the parasympathetic nervous system (PNS). However, the exact mechanism remains to be determined. We investigated that patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) could exhibit an altered gut microbiota through the suppression of the PNS, compared to the healthy individuals, using the combined gut microbiota data from previous human studies. The hypothesis was validated in rats to suppress the PNS by scopolamine injections. The human fecal bacterial FASTA/Q files were selected and combined from four different AD studies (n = 410). All rats had a high-fat diet and treatments for six weeks. The MD rats had memory impairment by scopolamine injection (2 mg/kg body weight; MD, Control) or no memory impairment by saline injection. The scopolamine-injected rats had a donepezil intake as the positive group. In the optimal model generated from the XGboost analysis, Blautia luti, Pseudomonas mucidoiens, Escherichia marmotae, and Gemmiger formicillis showed a positive correlation with MCI while Escherichia fergusonii, Mycobacterium neglectum, and Lawsonibacter asaccharolyticus were positively correlated with AD in the participants with enterotype Bacteroides (ET-B, n = 369). The predominant bacteria in the AD group were negatively associated in the networking analysis with the bacteria in the healthy group of ET-B participants. From the animal study, the relative abundance of Bacteroides and Bilophilia was lower, and that of Escherichia, Blautia, and Clostridium was higher in the scopolamine-induced memory deficit (MD) group than in the normal group. These results suggest that MCI was associated with the PNS suppression and could progress to AD by exacerbating the gut dysbiosis. MCI increased Clostridium and Blautia, and its progression to AD elevated Escherichia and Pseudomonas. Therefore, the modulation of the PNS might be linked to an altered gut microbiota and brain function, potentially through the gut-brain axis.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Korea
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| | - Xuangao Wu
- Department of Bioconvergence, Hoseo University, Asan 31499, Korea
| |
Collapse
|
9
|
Zhang T, Kim MJ, Kim MJ, Wu X, Yang HJ, Yuan H, Huang S, Yoon SM, Kim KN, Park S. Long-Term Effect of Porcine Brain Enzyme Hydrolysate Intake on Scopolamine-Induced Memory Impairment in Rats. Int J Mol Sci 2022; 23:ijms23063361. [PMID: 35328781 PMCID: PMC8951530 DOI: 10.3390/ijms23063361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
No study has revealed the effect of porcine brain enzyme hydrolysate (PBEH) on memory impairment. We aimed to examine the hypothesis that PBEH intake modulates memory deficits and cognitive behavior in scopolamine (SC)-induced amnesia rats, and its mechanism, including gut microbiota changes, was determined. Sprague–Dawley male rats had intraperitoneal injections of SC (2 mg/kg body weight/day) at 30 min after daily feeding of casein (MD-control), PBEH (7 mg total nitrogen/mL) at 0.053 mL (Low-PBEH), 0.159 mL (Medium-PBEH), 0.478 mL (High-PBEH), or 10 mg donepezil (Positive-control) per kilogram body weight per day through a feeding needle for six weeks. The Normal-control rats had casein feeding without SC injection. PBEH dose-dependently protected against memory deficits determined by passive avoidance test, Y-maze, water-maze, and novel object recognition test in SC-induced rats compared to the MD-control. The High-PBEH group had a similar memory function to the Positive-control group. Systemic insulin resistance determined by HOMA-IR was lower in the PBEH groups than in the Normal-control but not the Positive-control. In parallel with systemic insulin resistance, decreased cholesterol and increased glycogen contents in the hippocampus in the Medium-PBEH and High-PBEH represented reduced brain insulin resistance. PBEH intake prevented the increment of serum TNF-α and IL-1β concentrations in the SC-injected rats. Hippocampal lipid peroxide and TNF-α contents and mRNA TNF-α and IL-1β expression were dose-dependently reduced in PBEH and Positive-control. PBEH decreased the hippocampal acetylcholinesterase activity compared to the MD-control, but not as much as the Positive-control. PBEH intake increased the α-diversity of the gut microbiota compared to the MD-control, and the gut microbiota community was separated from MD-control. In metagenome function analysis, PBEH increased the energy metabolism-related pathways of the gut microbiota, including citric acid cycle, oxidative phosphorylation, glycolysis, and amino acid metabolism, which were lower in the MD-control than the Normal-control. In conclusion, alleviated memory deficit by PBEH was associated potentially with not only reducing acetylcholinesterase activity but also improving brain insulin resistance and neuroinflammation potentially through modulating gut microbiota. PBEH intake (1.5–4.5 mL of 7 mg total nitrogen/mL for human equivalent) can be a potential therapeutic agent for improving memory impairment.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Min Jung Kim
- Research Division of Food Functionality, Korean Food Research Institutes, Wanju 55365, Korea; (M.J.K.); (H.J.Y.)
| | - Min Ju Kim
- Department of R&D, Unimed Pharmaceuticals Inc., Unimed Bldg., Seoul 05567, Korea; (M.J.K.); (S.M.Y.); (K.-N.K.)
| | - Xuangao Wu
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Hye Jeong Yang
- Research Division of Food Functionality, Korean Food Research Institutes, Wanju 55365, Korea; (M.J.K.); (H.J.Y.)
| | - Heng Yuan
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Shaokai Huang
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Sun Myung Yoon
- Department of R&D, Unimed Pharmaceuticals Inc., Unimed Bldg., Seoul 05567, Korea; (M.J.K.); (S.M.Y.); (K.-N.K.)
| | - Keun-Nam Kim
- Department of R&D, Unimed Pharmaceuticals Inc., Unimed Bldg., Seoul 05567, Korea; (M.J.K.); (S.M.Y.); (K.-N.K.)
| | - Sunmin Park
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| |
Collapse
|
10
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Encouraging probiotics for the prevention and treatment of immune-related adverse events in novel immunotherapies against malignant glioma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:817-827. [PMID: 36654824 PMCID: PMC9834274 DOI: 10.37349/etat.2022.00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 12/28/2022] Open
Abstract
Among the malignant tumors in the central nervous system (CNS), glioma is the most challenging tumor to the public society, which accounts for the majority of intracranial malignant tumors with impaired brain function. In general, conventional therapies are still unable to provide an effective cure. However, novel immunotherapies have changed the treatment scene giving patients a greater potential to attain long term survival, improved quality of life. Having shown favorable results in solid tumors, those therapies are now at a cancer research hotspot, which could even shrink the growth of glioma cells without causing severe complications. However, it is important to recognize that the therapy may be occasionally associated with noteworthy adverse action called immune-related adverse events (IRAEs) which have emerged as a potential limitation of the therapy. Multiple classes of mediators have been developed to enhance the ability of immune system to target malignant tumors including glioma but may also be associated with the IRAEs. In addition, it is probable that it would take long time after the therapy to exhibit severe immune-related disorders. Gut microbiota could play an integral role in optimal immune development and/or appropriate function for the cancer therapy, which is a vital component of the multidirectional communication between immune system, brain, and gut, also known as gut-brain-immune axis. Here, we show the potential effects of the gut-brain-immune axis based on an "engram theory" for the innovative treatment of IRAEs.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan,Correspondence: Satoru Matsuda, Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|