1
|
Geng Y, Li Y, Qi H, Gao J, Wu Y, Cai X. Preparation of pH-enzyme dual-responsive gel microspheres and their treatment of ulcerative colitis. Int J Biol Macromol 2025; 306:141567. [PMID: 40023431 DOI: 10.1016/j.ijbiomac.2025.141567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Mesalazine (MSZ), a first-line treatment for ulcerative colitis (UC), was formulated into acid-resistant, colon-targeted gel microspheres to reduce upper gastrointestinal tract (GIT) exposure and extend drug retention in the colon. In this study, we used MSZ/hydroxypropyl-β-cyclodextrin (MSZ/HP-β-CD) as the model drug, dopamine-modified sodium alginate (DA-SA) and konjac glucomannan (KGM) as the carrier matrix, and chitosan (CS) as the coating material. The colon-targeted gel microspheres (MSZ/HP-β-CD/DA-SA/KGM/CS) were prepared using the drop method. These microspheres had a drug loading capacity of 7.9 ± 0.01 % and an encapsulation efficiency of 72.5 ± 0.03 %. The drug primarily released in the colon environment, showing pH and β-mannanase sensitivity. The dried microspheres measured approximately 0.6 mm, suitable for oral administration. In the rat UC model, after oral administration of gel microspheres, the colon length increased, while the DAI score, spleen index, and the expression levels of IL-6, IL-1β, TNF-α, TLR4, MyD88 and NF-κB p65 all decreased. Histopathological examination showed that treated UC rats' colon tissues closely resembled those of healthy controls. These findings indicate that pH-enzyme-responsive coated gel microspheres can effectively target the colon and show potential for UC treatment.
Collapse
Affiliation(s)
- Yingjie Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Haolong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jianguo Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yanqing Wu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
2
|
Wang K, Qin X, Li C, Wu J, Liu X, Ma J, Zhou Y, Zhu Q, Liu Y, Jin Y. Mechanism of the Discontinuous Structure in Heat-Induced Natural Egg Yolk Mediated by Accumulation of Yolk Sphere Microgels: Morphology, 4D-DIA Proteomics, and Physicochemical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3268-3278. [PMID: 39868431 DOI: 10.1021/acs.jafc.4c11324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The heat-induced natural egg yolk is a discontinuous object formed by the accumulation of yolk spheres. However, the reason why yolk spheres form individual microgels rather than continuous gels has not been elucidated. This study investigated the different gelation behaviors in the yolk sphere exterior (EYSE) and the yolk sphere interior (EYSI) by using 4D-DIA proteomics, electron microscopy, and multispectral techniques. Results demonstrated that vitellogenin-1, -2, and -3 (EYSI/EYSE fold change: 3.36, 3.53, and 2.42, respectively) were key proteins corresponding to continuous gel structure formation of EYSI. However, the high levels of apolipoprotein A-I (FC: 0.18) and heat shock protein found in EYSE with a special hydrophobic domain for lipid binding impeded the continuous gel formation. Thus, the EYSE formed some small-volume aggregates without continuous gel, which separated individually the microgel of yolk spheres. This study will provide theoretical guidance for the quality regulation of egg yolk products.
Collapse
Affiliation(s)
- Keshan Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xianmin Qin
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chan Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiao Wu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ying Zhou
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qiujin Zhu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuanyuan Liu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
3
|
Sathiensathaporn S, Solé‐Porta A, Baowan D, Pissuwan D, Wongtrakoongate P, Roig A, Katewongsa KP. Nanoencapsulation of vitamin B 2 using chitosan-modified poly(lactic-co-glycolic acid) nanoparticles: Synthesis, characterization, and in vitro studies on simulated gastrointestinal stability and delivery. J Food Sci 2025; 90:e17631. [PMID: 39731719 PMCID: PMC11734382 DOI: 10.1111/1750-3841.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Vitamin B2, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B2 is crucial to overcoming these challenges. This study employed chitosan-coated poly(lactic-co-glycolic acid) nanoparticles (CS-PLGA NPs) as a novel delivery system to enhance the bioavailability of vitamin B2 for food fortification and nutraceutical applications. The nanoparticles, with sizes below 200 nm, exhibited greater stability than PLGA NPs after freeze-drying and in simulated body fluids. Encapsulation improved the photostability of vitamin B2 under ultraviolet light and prolonged its release in simulated body fluids compared to non-encapsulated vitamin B2. Furthermore, CS-PLGA NPs demonstrated higher uptake in intestinal epithelial cells (Caco-2), indicating enhanced transport and potential for use in fortified food systems. These findings underscore the promise of CS-PLGA NPs for delivering vitamin B2 in food, nutraceutical, and pharmaceutical applications. PRACTICAL APPLICATION: The use of chitosan-coated PLGA NPs for encapsulating vitamin B2 offers a promising solution to enhance its bioavailability, especially for individuals with gastrointestinal absorption issues. This formulation improves stability, controlled release, and cellular uptake, which can lead to more effective supplementation strategies in nutraceutical and pharmaceutical applications. It could benefit patients with vitamin B2 deficiencies, such as those with malabsorption disorders, by ensuring efficient delivery through the gastrointestinal tract. Additionally, this approach can be applied to other water-soluble vitamins or bioactive compounds, offering a versatile platform for improving the efficacy of oral supplements.
Collapse
Affiliation(s)
| | - Anna Solé‐Porta
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus UABBellaterraSpain
| | - Duangkamon Baowan
- Department of Mathematics, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Dakrong Pissuwan
- School of Materials Science and Innovation, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- Center for Neuroscience, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus UABBellaterraSpain
| | - Kanlaya Prapainop Katewongsa
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- School of Materials Science and Innovation, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
4
|
Qu Y, Li X, Chen X, Li J, Yu Z, Shen R. Novel pH-sensitive gellan gum-ε-polylysine hydrogel microspheres for sulforaphene delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9423-9433. [PMID: 39045717 DOI: 10.1002/jsfa.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND This study aimed to improve the stability and utilization of sulforaphene (SFE) and to enhance the intestinal stability and pH-sensitive release of SFE in the gastrointestinal tract. To achieve this objective, calcium chloride (CaCl2) was used as a crosslinking agent to fabricate novel SFE-loaded gellan gum (GG)-ε-polylysine (ε-PL) pH-sensitive hydrogel microspheres by using the ionic crosslinking technique. RESULTS The molecular docking results of GG, ε-PL, and SFE were good and occurred in the natural state. The loading efficiency (LE) of all samples was above 70%. According to the structural characterization results, GG and ε-PL successfully embedded SFE in a three-dimensional network structure through electrostatic interaction. The swelling characteristics and in vitro release results revealed that the microspheres were pH-sensitive, and SFE was mainly retained inside the hydrogel microsphere in the stomach, and subsequently released in the intestine. The result of cytotoxicity assay showed that the hydrogel microspheres were non-toxic and had an inhibitory effect on human colon cancer Caco-2 cells. CONCLUSION Thus, the hydrogel microspheres could improve SFE stability and utilization and achieve the intestinal targeted delivery of SFE. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Qu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiuxia Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiaoqiao Chen
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhangfu Yu
- Hangzhou Xiaoshan Agriculture Development Co., Ltd, Hangzhou, China
| | - Ronghu Shen
- Hangzhou Xiaoshan Agriculture Development Co., Ltd, Hangzhou, China
| |
Collapse
|
5
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Jin H, Wen J, Wang L, Zhang Y, Sui X. Synthesis and characterization of ion-induced sodium alginate/soy protein isolate microgels for the controlled release. Food Chem 2024; 452:139588. [PMID: 38754168 DOI: 10.1016/j.foodchem.2024.139588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of β-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.
Collapse
Affiliation(s)
- Hainan Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Wen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Ma R, Shi X, Wang X, Si C, Gong Y, Jian W, Zhou C, Yang H, Xu L, Zhang H. Development of a tobramycin-loaded calcium alginate microsphere/chitosan composite sponge with antibacterial effects as a wound dressing. Biomed Mater 2024; 19:045030. [PMID: 38815605 DOI: 10.1088/1748-605x/ad525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Traditional dressings exhibit several disadvantages, as they frequently lead to bacterial infections, cause severe tissue adhesion and perform a relatively single function. Therefore, in this study, a composite sponge dressing with antibacterial properties and excellent physicochemical properties was developed. Six groups of tobramycin-loaded calcium alginate microspheres were prepared by changing the amount of tobramycin added, and the optimal group was selected. Then, seven groups of tobramycin-loaded calcium alginate microsphere/chitosan composite sponges were fabricated via a solvent blending process and a freeze-drying method. The surface morphology, physicochemical properties,in vitrodegradation properties,in vitrodrug release properties, antibacterial properties and cytotoxicity of the composite sponges were examined. Group 3.0 contained the best microspheres with the largest drug loading capacity, good swelling performance and cumulative drug release rate, obvious and sustained antibacterial activity, and good cytocompatibility. The tobramycin-loaded calcium alginate microsphere/chitosan composite sponges exhibited three-dimensional porous structures, and their porosity, swelling rate, water absorption and water retention rates and water vapor transmission rate met the standards needed for an ideal dressing. The comprehensive performance of the sponge was best when 20 mg of drug-loaded microspheres was added (i.e. group 20). The cumulative drug release rate of the sponge was 29.67 ± 4.14% at 7 d, the diameters of the inhibition zones against the three bacteria were greater than 15 mm, and L929 cell proliferation was promoted. These results demonstrated that the tobramycin-loaded calcium alginate microsphere/chitosan composite sponge with 20 mg of tobramycin-loaded microspheres shows promise as a dressing for infected wounds.
Collapse
Affiliation(s)
- Ruixia Ma
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Department of Stomatology, The Third People's Hospital of Yinchuan, Yinchuan 750004, People's Republic of China
| | - Xingyan Shi
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Xiaoyan Wang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Chenchen Si
- General Hospital of Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Yuwei Gong
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Wei Jian
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Chen Zhou
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Hui Yang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Lihua Xu
- Department of General Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Hualin Zhang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, People's Republic of China
- Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| |
Collapse
|
8
|
Yan X, Yan J, Shi X, Song Y, McClements DJ, Ma C, Liu X, Chen S, Xu D, Liu F. High internal phase double emulsions stabilized by modified pea protein-alginate complexes: Application for co-encapsulation of riboflavin and β-carotene. Int J Biol Macromol 2024; 270:132313. [PMID: 38740156 DOI: 10.1016/j.ijbiomac.2024.132313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (β-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic β-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of β-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyue Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuying Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, Hubei, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Gedik PU, Aydin E, Ozkan G, Ozcelik MM. Production of Encapsulated Hydrogel Beads and Sugar-Free Beverage from Gilaburu Fruit Rich in Antioxidants, Antidiabetic Bioactives, and its Microwave-Assisted Extraction Optimization. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
10
|
Zhang Y, Jia X. Delivery Systems to Enhance Bioaccessibility and Bioavailability of Bioactive Factors: Structure, Property, and Food Applications. Foods 2023; 12:3127. [PMID: 37628126 PMCID: PMC10453363 DOI: 10.3390/foods12163127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Incorporating bioactive factors to strengthen food nutrition is important for functional food development [...].
Collapse
Affiliation(s)
- Yaqiong Zhang
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jia
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
11
|
Milivojević M, Popović A, Pajić-Lijaković I, Šoštarić I, Kolašinac S, Stevanović ZD. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. Gels 2023; 9:620. [PMID: 37623075 PMCID: PMC10454207 DOI: 10.3390/gels9080620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.
Collapse
Affiliation(s)
- Milan Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Popović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Pajić-Lijaković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivan Šoštarić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Stefan Kolašinac
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | | |
Collapse
|
12
|
Bustos D, Guzmán L, Valdés O, Muñoz-Vera M, Morales-Quintana L, Castro RI. Development and Evaluation of Cross-Linked Alginate-Chitosan-Abscisic Acid Blend Gel. Polymers (Basel) 2023; 15:3217. [PMID: 37571107 PMCID: PMC10420979 DOI: 10.3390/polym15153217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Abscisic acid (ABA) has been proposed to play a significant role in the ripening of nonclimacteric fruit, stomatal opening, and response to abiotic stresses in plants, which can adversely affect crop growth and productivity. The biological effects of ABA are dependent on its concentration and signal transduction pathways. However, due to its susceptibility to the environment, it is essential to find a suitable biotechnological approach to coat ABA for its application. One promising approach is to utilize alginate and chitosan, two natural polysaccharides known for their strong affinity for water and their ability to act as coating agents. In this study, an alginate-chitosan blend was employed to develop an ABA cover. To achieve this, an alginate-chitosan-abscisic acid (ALG-CS-ABA) blend was prepared by forming ionic bonds or complexes with calcium ions, or through dual cross-linking. This was done by dripping a homogeneous solution of alginate-chitosan and ABA into a calcium chloride solution, resulting in the formation of the blend. By combining the unique properties of alginate, chitosan, and ABA, the resulting ALG-CS-ABA blend can potentially offer enhanced stability, controlled release, and improved protection of ABA. These characteristics make it a promising biotechnological approach for various applications, including the targeted delivery of ABA in agricultural practices or in the development of innovative plant-based products. Further evaluation and characterization of the ALG-CS-ABA blend will provide valuable insights into its potential applications in the fields of biomedicine, agriculture, and tissue engineering.
Collapse
Affiliation(s)
- Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (D.B.); (O.V.)
- Laboratorio de Bioinformática y Química Computacional (LBQC), Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747–721, Talca 3460000, Chile;
| | - Oscar Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (D.B.); (O.V.)
| | - Marcelo Muñoz-Vera
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile;
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile
| | - Ricardo I. Castro
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Aplicadas, Facultad de Arquitectura, Construcción y Medio Ambiente, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile
| |
Collapse
|
13
|
Heydari A, KhajeHassani M, Daneshafruz H, Hamedi S, Dorchei F, Kotlár M, Kazeminava F, Sadjadi S, Doostan F, Chodak I, Sheibani H. Thermoplastic starch/bentonite clay nanocomposite reinforced with vitamin B 2: Physicochemical characteristics and release behavior. Int J Biol Macromol 2023; 242:124742. [PMID: 37148934 DOI: 10.1016/j.ijbiomac.2023.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
This study presents the development and characterization of a nanocomposite material, consisting of thermoplastic starch (TPS) reinforced with bentonite clay (BC) and encapsulated with vitamin B2 (VB). The research is motivated by the potential of TPS as a renewable and biodegradable substitute for petroleum-based materials in the biopolymer industry. The effects of VB on the physicochemical properties of TPS/BC films, including mechanical and thermal properties, water uptake, and weight loss in water, were investigated. In addition, the surface morphology and chemical composition of the TPS samples were analyzed using high-resolution SEM microscopy and EDS, providing insight into the structure-property relationship of the nanocomposites. The results showed that the addition of VB significantly increased the tensile strength and Young's modulus of TPS/BC films, with the highest values observed for nanocomposites containing 5 php of VB and 3 php of BC. Furthermore, the release of VB was controlled by the BC content, with higher BC content leading to lower VB release. These findings demonstrate the potential of TPS/BC/VB nanocomposites as environmentally friendly materials with improved mechanical properties and controlled release of VB, which can have significant applications in the biopolymer industry.
Collapse
Affiliation(s)
- Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia; National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešťany, Slovakia.
| | - Milad KhajeHassani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Haniyeh Daneshafruz
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Sepideh Hamedi
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| | - Faeze Dorchei
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Mário Kotlár
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, Bratislava 81243, Slovakia
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Farideh Doostan
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ivan Chodak
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Hassan Sheibani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| |
Collapse
|
14
|
Liu L, Song W, Zheng W, Li F, Lv H, Wang Y, Chen Y, Wang Y. Dual-responsive multilayer beads with zero leakage and controlled release triggered by near-infrared light. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Fărcaș AC, Socaci SA, Chiș MS, Martínez-Monzó J, García-Segovia P, Becze A, Török AI, Cadar O, Coldea TE, Igual M. In Vitro Digestibility of Minerals and B Group Vitamins from Different Brewers' Spent Grains. Nutrients 2022; 14:3512. [PMID: 36079770 PMCID: PMC9460495 DOI: 10.3390/nu14173512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brewers' spent grain (BSG), the main by-product of the brewing industry, is a rich source of minerals and water-soluble vitamins such as thiamine, pyridoxine, niacin, and cobalamin. Bioaccessibility through in vitro digestion is an important step toward the complete absorption of minerals and B group vitamins in the gastrointestinal system. Inductively coupled plasma optical emission spectrometry (ICP-OES) together with inductively coupled plasma quadrupole mass spectrometry (ICP-MS) was used for the quantification of the macro- and micro-minerals. An ultra-high performance liquid chromatography (UHPLC) system coupled with a diode array detector (DAD) was used for B group vitamin identification. Four different industrial BSG samples were used in the present study, with different percentages of malted cereals such as barley, wheat, and degermed corn. Calcium's bioaccessibility was higher in the BSG4 sample composed of 50% malted barley and 50% malted wheat (16.03%), while iron presented the highest bioaccessibility value in the BSG2 sample (30.03%) composed of 65% Pale Ale malt and 35% Vienna malt. On the other hand, vitamin B1 had the highest bioaccessibility value (72.45%) in the BSG3 sample, whilst B6 registered the lowest bioaccessibility value (16.47%) in the BSG2 sample. Therefore, measuring the bioaccessibilty of bioactive BSG compounds before their further use is crucial in assessing their bioavailability.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Javier Martínez-Monzó
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Purificación García-Segovia
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Anca Becze
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Anamaria Iulia Török
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Oana Cadar
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
16
|
Adsorption of Cu2+ by Modified Chitosan Microspheres and Its Application in homocoupling of Arylboronic Ac. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
The multilayered emulsion-filled gel microparticles: Regulated the release behavior of β-carotene. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|