1
|
Meng X, Huang X, Cheng J, Wang Y, Wang L, He L, Liu D, Jiang J. Anti-glycemic mechanism of dihydromyricetin from Ampelopsis grossedentata on α-glucosidase by multispectroscopic investigation and in silico molecular simulation. Int J Biol Macromol 2025; 308:142571. [PMID: 40154717 DOI: 10.1016/j.ijbiomac.2025.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
As a potential anti-glycemic candidate in Ampelopsis grossedentata, the binding behavior of dihydromyricetin (DMY) on α-glucosidase (α-GLA) was investigated by multispectral techniques and in silico molecular docking coupled with molecular dynamic simulation. The results revealed that DMY had potent inhibition on α-GLA with the IC50 of 38 ± 0.025 μM in a mixed competitive mode. It could attenuate the endogenous fluorescence of α-GLA through the static quenching manner. The thermodynamic analysis indicated hydrogen bonding and van der Waals forces were two major driving forces to maintain the stability of the complex, resulting in the decline of α-helix and β-turn and enhancement of β-sheet and random coil correspondingly, evidenced by Fourier transform infrared spectroscopy and circular dichroism approaches. Isothermal titration calorimetry directly measured the dissociation constant Kd for the bound α-GLA-DMY complex was 2.39 ± 0.034 μM with enthalpy change of -33.8 ± 2.85 kJ·mol-1 and entropy change of -24.1 ± 1.76 J·mol-1·K-1. As expected with the microenvironmental changes, the docking conformation followed by dynamic simulation within 200 ns further corroborated the surrounding catalytic sites of α-GLA was non-covalently bound by DMY, in which GLU411, ARG442, ARG315 and PRO312 as hydrogen bond acceptors were double-connected by -OH of DMY at C7 in the A ring and C5' in the B ring, and reinforced by the hydroxyl substitution at C3 due to the hydrogenation on C2C3 bond in C ring. Our findings would boost DMY as a spectacular α-GLA inhibitor for hypoglycemic foods application.
Collapse
Affiliation(s)
- Xiaohui Meng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China; Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Xubo Huang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Junwen Cheng
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Yanbin Wang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Liling Wang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Liang He
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China.
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Jinrong Jiang
- Forestry Technology Extension Station, Qingtian County Forestry Bureau, Lishui 323999, PR China
| |
Collapse
|
2
|
Karakoti H, Kumar R, Prakash O, Dhami A, Kumar S, Rawat DS. Bioactive flavonoids from Leucosceptrum canum with nematicidal efficacy and mechanistic insights through acetylcholinesterase inhibition and docking study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106294. [PMID: 40015886 DOI: 10.1016/j.pestbp.2025.106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
Leucosceptrum canum, a rare Himalayan plant, shows significant bioactive properties, with its nematicidal potential investigated here for the first time. This study isolated and characterized flavonoids from L. canum, assessing their efficacy against the plant-parasitic nematode Meloidogyne incognita. Bioassay-guided fractionation identified three active flavonoids: Pectolinarigenin, 5,6,7-Trihydroxy-4'-methoxyflavone and Acacetin, structurally elucidated using spectroscopic techniques and literature comparisons. The flavonoids exhibited dose-dependent nematicidal activity, with percent mortalities after 96 h of 100 %, 92 %, and 59 %, respectively. LC₅₀ values of Pectolinarigenin (11.79 μg/mL), 5,6,7-Trihydroxy-4'-methoxyflavone (230.54 μg/mL), and Acacetin (679.67 μg/mL) were recorded, comparable to the standard nematicide Nimitz (LC₅₀: 0.01 μg/mL). These flavonoids also showed strong to moderate acetylcholinesterase (AChE) inhibitory activity, with IC₅₀ values of 17.09, 86.72, and 142.2 μg/mL, respectively, nearing the efficacy of standard, physostigmine (IC₅₀: 19.37 μg/mL), suggesting a neuromuscular mechanism of action. The enzyme kinetics analysis of pectolinarigenin revealed it to be a reversible inhibitor of AChE exhibiting mixed-type inhibition, with inhibition constant of 15.94 μg/mL. Molecular docking revealed strong binding affinities (-7.8 to -7.2 kcal/mol) at the AChE active site, highlighting key hydrogen bonds and hydrophobic interactions. ADMET analysis confirmed favorable pharmacokinetic and safety profiles, underscoring the potential of these flavonoids as eco-friendly nematicidal alternatives. This study establishes L. canum as a valuable source of flavonoids with dual nematicidal and AChE inhibitory properties, supported by integrated in vitro and in silico studies. It underscores the untapped phytochemical wealth of Himalayan flora for sustainable nematode management.
Collapse
Affiliation(s)
- Himani Karakoti
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India.
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India.
| | - Om Prakash
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Anamika Dhami
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Satya Kumar
- Medicinal Process Chemistry Division CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Dharmendra Singh Rawat
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| |
Collapse
|
3
|
Irum I, Khan F, Sufyan M, Benish Ali SH, Rehman S. Developing multifaceted drug synergistic therapeutic strategy against neurological disorders. Comput Biol Med 2025; 185:109495. [PMID: 39693689 DOI: 10.1016/j.compbiomed.2024.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug synergism can alter the ultimate biological effects and bioavailability of phytoconstituents. Acetylcholinesterase (AChE) inhibitors as symptomatic drugs are potent therapeutic regimen for neurodegenerative diseases. In this context, this study characterized the synergistic antioxidant, anti-inflammatory and anti-AChE effects of the selected phytochemicals including standard drugs followed by enzyme kinetics, structure-based ligands screening and molecular dynamics simulation study. The synergistic interactions were evaluated through Isoradiation and Synergy finder 3.0 methods. The combinations of Quercetin (QCT), Folic acid (FA), and Swertiamarin (SWT) with specific reference drugs were studied. The combinations of SWT + GA (Gallic acid) and FA + GA at 1:1 (γ:0.10 & 0.08, respectively) showed the significant synergistic antioxidant effect via ABTS assay. Further, in combination, QCT + SWT showed the maximum synergistic effect (γ: 0.02-0.13) in anti-inflammatory assay. Moreover, the combinations QCT, FA, and SWT with reference drug, Donepezil (DP), illustrated potent synergistic activity as anti-AChE in 1:1 proportion (γ: 0.18). The interaction pattern of phytochemicals significantly exhibited synergism (γ < 1) depicting their optimum activity in combinations compared to individual components. Enzyme kinetics evaluation showed the competitive binding of SWT with AChE as of donepezil. All the parameters of ADMET study proposed the QCT and SWT as acceptable oral drug molecules. Computational docking study revealed that QCT and SWT with lowest RMSD (1.096, 2.104) and lowest docking score (-9.831, -7.435 kcal/mol) showed maximum binding efficacy. Furthermore, molecular simulation study depicted the stability of protein-ligand complexes. These findings provide novel insight in the development of dietary treatment based on their synergistic effects for neurological disorders as optimum alternative therapeutic agents.
Collapse
Affiliation(s)
- Izza Irum
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
4
|
Bharti, Nair MS. Targeting Human Papillomavirus 33 E2 DNA Binding Domain With Polyphenols: Unveiling Interactions Through Biophysical and In Silico Methods. J Mol Recognit 2025; 38:e3106. [PMID: 39396813 DOI: 10.1002/jmr.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
The human papillomavirus (HPV) 33 is a high-risk strain that causes lesions with potential cancerous outcomes. Its E2 protein regulates the viral protein transcription and life cycle maintenance. The DNA binding domain (DBD) of the E2 protein plays a crucial role in the viral life cycle. The DBD region of the E2 protein is particularly interesting for targeting and finding potential inhibitors to inhibit its function or dimerization. Given the limited research on HPV 33 and its proteins, the present work delved into the interaction of two natural polyphenolic compounds, resveratrol, and baicalein, with the E2 DBD of HPV 33 using biophysical and in silico studies. Fluorescence studies of the E2 DBD-polyphenol complexes showed fluorescence quenching with a binding constant of the order of 106 M-1. Circular dichroism data reveal conformational changes upon binding with the polyphenols, possibly due to distinct binding sites of the E2 DBD. Differential scanning calorimetry exhibited higher melting temperatures for the two complexes than alone DBD, suggesting the complexes' stability. ITC experiment suggested favorable binding reactions with k d values in the micromolar range. Molecular docking and dynamic simulation studies revealed that the resveratrol binds to the helical region and baicalein near the central dimeric interface of E2 DBD with a good binding affinity, forming a stable protein-ligand complex during the run of 100 ns simulation. Therefore, the current study identifies both polyphenolic compounds as promising candidates for potential antiviral drug development.
Collapse
Affiliation(s)
- Bharti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
5
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
6
|
Han L, Wang H, Cao J, Li Y, Jin X, He C, Wang M. Inhibition mechanism of α-glucosidase inhibitors screened from Tartary buckwheat and synergistic effect with acarbose. Food Chem 2023; 420:136102. [PMID: 37060666 DOI: 10.1016/j.foodchem.2023.136102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
Tartary buckwheat has been shown to provide a good antihyperglycemic effect. However, it is unclear which active compounds play a key role in attenuating postprandial hyperglycemia. Presently, acetone extract from the hull of Tartary buckwheat had the best effect for α-glucosidase inhibition (IC50 = 0.02 mg/mL). Twelve potential α-glucosidase inhibitors from Tartary buckwheat were screened and identified by the combination of ultrafiltration and high-performance liquid chromatography coupled with mass spectrometry. Myricetin and quercetin exhibited the highest anti-α-glucosidase activity with IC50 values of 0.02 and 0.06 mg/mL, respectively. These inhibitors manifested different types of inhibition manners against α-glucosidase via direct interaction with the amino acid residues. The results of structure-activity relationships indicated that an increase in the number of -OH on the B-ring greatly strengthened α-glucosidase inhibitory activity, but glucoside and rutinoside replacement on the C-ring obviously weakened this influence. Furthermore, a synergistic effect was observed between inhibitors with different inhibition manners.
Collapse
Affiliation(s)
- Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Huiqing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Junwei Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030006, PR China
| | - Xiying Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
7
|
The Combination of Baicalein and Memantine Reduces Oxidative Stress and Protects against β-amyloid-Induced Alzheimer’s Disease in Rat Model. Antioxidants (Basel) 2023; 12:antiox12030707. [PMID: 36978955 PMCID: PMC10045767 DOI: 10.3390/antiox12030707] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer’s disease (AD) is a neuronal condition causing progressive loss of memory and cognitive dysfunction particularly in elders. An upsurge in the global old age population has led to a proportionate increase in the prevalence of AD. The current treatments for AD are symptomatic and have debilitating side effects. A literature review and current research have directed scientists to explore natural products with better safety and efficacy profiles as new treatment options for AD. Baicalein, belonging to the flavone subclass of flavonoids, has been reported for its anti-oxidant, anti-inflammatory, AChE enzyme inhibitory activity and anti-amyloid protein aggregation activity, which collectively demonstrates its benefits as a neuroprotective agent. Presently, memantine, a NMDAR antagonist, is one of the important drugs used for treatment of Alzheimer’s disease. The current study aims to investigate the effect of baicalein in combination with memantine in β-amyloid-induced AD in albino Wistar rats. Baicalein (10 mg/kg) alone, 5 mg/kg and 10 mg/kg in combination with memantine (20 mg/kg) was administered for 21 days. Treatment with baicalein in combination with memantine showed significant improvement in behavioural studies. The combination treatment decreased oxidative stress, β-amyloid plaque formation and increased the expression of brain-derived neurotrophic factor (BDNF) in the brain. From the results, it can be concluded that treatment with baicalein and memantine could be beneficial for reducing the progression of neurodegeneration in rats. Baicalein has an additive effect in combination with memantine, making it a potential option for the treatment of AD.
Collapse
|
8
|
Jadhav R, Kulkarni YA. Effects of baicalein with memantine on aluminium chloride-induced neurotoxicity in Wistar rats. Front Pharmacol 2023; 14:1034620. [PMID: 36909151 PMCID: PMC9992210 DOI: 10.3389/fphar.2023.1034620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative condition. It is one of the most common 28 forms of dementia accounting for 60-80% of people suffering from dementia. There are very few medications that are approved for the treatment of Alzheimer's disease. Baicalein, belonging to the flavone subclass of flavonoids, has been reported to have a neuroprotective effect by reducing oxidative stress and neuroinflammation, inhibiting the AChE enzyme, and reducing amyloid protein aggregation and toxicity. Memantine is one of the most important drugs used for treating Alzheimer's disease. The purpose of this work was to study the effect of baicalein with memantine on aluminum chloride-induced neurotoxicity in Wistar rats. Aluminum chloride (100 mg/kg p.o.) was administered for 42 days in male Wistar rats to induce neurotoxicity. Baicalein alone (10 mg/kg) and a combination of baicalein (5 mg/kg and 10 mg/kg) with memantine (20 mg/kg) were administered for 42 days. Treatment of baicalein with memantine showed significant improvement in behavioral parameters. The combination reduced oxidative stress and the formation of β-Amyloid plaques and increased brain-derived neurotrophic factor (BDNF) expression. Based on findings, it can be concluded that treatment with baicalein and memantine may slow the progression of neurodegeneration in rats.
Collapse
Affiliation(s)
- Ratnakar Jadhav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
9
|
Exploring the Inhibition of Quercetin on Acetylcholinesterase by Multispectroscopic and In Silico Approaches and Evaluation of Its Neuroprotective Effects on PC12 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227971. [PMID: 36432070 PMCID: PMC9699400 DOI: 10.3390/molecules27227971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
This study investigated the inhibitory mechanism of quercetin in acetylcholinesterase (AChE) and its neuroprotective effects on β-amyloid25-35-induced oxidative stress injury in PC12 cells. Quercetin inhibited AChE in a reversible mixed manner with an IC50 of 4.59 ± 0.27 µM. The binding constant of quercetin with AChE at 25 °C was (5.52 ± 0.05) × 104 L mol-1. Hydrogen bonding and van der Waals forces were the main interactions in forming the stable quercetin-AChE complex. Computational docking revealed that quercetin was dominant at the peripheral aromatic site in AChE and induced enzymatic allosterism; meanwhile, it extended deep into the active center of AChE and destabilized the hydrogen bond network, which caused the constriction of the gorge entrance and prevented the substrate from entering the enzyme, thus resulting in the inhibition of AChE. Molecular dynamics (MD) simulation emphasized the stability of the quercetin-AChE complex and corroborated the previous findings. Interestingly, a combination of galantamine hydrobromide and quercetin exhibited the synergistic inhibition effect by binding to different active sites of AChE. In a β-amyloid25-35-induced oxidative stress injury model in PC12 cells, quercetin exerted neuroprotective effects by increasing the glutathione level and reducing the malondialdehyde content and reactive oxygen species levels. These findings may provide novel insights into the development and application of quercetin in the dietary treatment of Alzheimer's disease.
Collapse
|
10
|
Nascimento LA, Nascimento ÉCM, Martins JBL. In silico study of tacrine and acetylcholine binding profile with human acetylcholinesterase: docking and electronic structure. J Mol Model 2022; 28:252. [PMID: 35947248 DOI: 10.1007/s00894-022-05252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative process, one of the most common and incident dementia in the population over 60 years. AD manifests the presence of complex biochemical processes involved in neuronal degeneration, such as the formation of senile plaques containing amyloid-β peptides, the development of intracellular neurofibrillary tangles, and the suppression of the acetylcholine neurotransmitter. In this way, we performed a set of theoretical tests of tacrine ligand and acetylcholine neurotransmitter against the human acetylcholinesterase enzyme. Molecular docking was used to understand the most important interactions of these molecules with the enzyme. Computational chemistry calculation was carried out using MP2, DFT, and semi-empirical methods, starting from molecular docking structures. We have also performed studies regarding the non-covalent interactions, electron localization function, molecular electrostatic potential and explicit water molecule influence. For Trp86 residue, we show two main interactions in accordance to the results of the literature for TcAChE. First, intermolecular interactions of the cation-π and sigma-π type were found. Second, close stacking interactions were stablished between THA+ and Trp86 residue on one side and with Tyr337 residue on the other side.
Collapse
Affiliation(s)
- Letícia A Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Érica C M Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João B L Martins
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
11
|
Structure Identification and Functional Mechanism of Natural Active Components: A Special Issue. Foods 2022; 11:foods11091285. [PMID: 35564007 PMCID: PMC9104782 DOI: 10.3390/foods11091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The natural active components derived from plants have attracted widespread attention due to their abundant species and source advantages [...]
Collapse
|