1
|
Barido FH, Puruhita, Hertanto BS, Cahyadi M, Kartikasari LR, Sujiwo J, Kim J, Kim HY, Jang A, Lee SK. Enzymatic hydrolyzation of Cordyceps militaris mushroom extracts and its effect on spent hen chicken. Anim Biosci 2024; 37:1277-1288. [PMID: 38665076 PMCID: PMC11222846 DOI: 10.5713/ab.23.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE This study was aimed to investigate the effect of fresh and dried hydrolyzed Cordyceps militaris (CM) mushroom with proteolytic enzymes; bromelain (CMB), flavorzyme (CMF), and mixture of bromelain: flavorzyme (CMBF) on quality properties of spent hen chicken. METHODS Mushroom extract (CME) were combined with three proteolytic enzyme mixtures that had different peptidase activities; stem bromelain (CMB), flavorzyme (CMF), and mixture of stem bromelain:flavorzyme (CMBF) at (1:1). The effect of these hydrolysates was investigated on spent hen breast meat via dipping marination. RESULTS Hydrolyzation positively alters functional properties of CM protease. in which bromelain hydrolyzed group (CMB) displayed the highest proteolytic activity at 4.57 unit/mL. The antioxidant activity had a significant increment from 5.32% in CME to 61.79% in CMB. A significantly higher emulsion stability index and emulsification activity index compared to CME were another result from hydrolyzation (p<0.05). Texture properties along with the shear force value and myofibrillar fragmentation index were notably improved under CMB and CMBF in fresh condition. Marination with CM mushroom protease that was previously hydrolyzed with enzymes was proven to also increase the nucleotide compounds, indicated by higher adenosine 5'-monophosphate (AMP) and inosine 5'-monophosphate (IMP) in hydrolysate groups (p<0.05). The concentration of both total and insoluble collagen remained unchanged, meaning less effect from CM protease. CONCLUSION This study suggested the hydrolyzation of CM protease with bromelain or a mixture of bromelain:flavourzyme to significantly improve functional properties of protease and escalate the taste-related nucleotide compounds and texture profiles from spent hen breast meat.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126,
Indonesia
- Halal Research Center and Services (HRCS), Institute for Research and Community Service, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126,
Indonesia
| | - Puruhita
- Restu Dwi Pangan Co, Tangerang, Banten 15345,
Indonesia
| | - Bayu Setya Hertanto
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126,
Indonesia
| | - Muhammad Cahyadi
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126,
Indonesia
- Halal Research Center and Services (HRCS), Institute for Research and Community Service, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126,
Indonesia
| | - Lilik Retna Kartikasari
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126,
Indonesia
| | - Joko Sujiwo
- Department of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada, Sleman, Special Region of Yogyakarta 55281,
Indonesia
| | - Juntae Kim
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, Daejeon 34134,
Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439,
Korea
| | - Aera Jang
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Sung Ki Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
2
|
Liu S, Jiang Y, Wang Y, Huo H, Cilkiz M, Chen P, Han Y, Li L, Wang K, Zhao M, Zhu L, Lei J, Wang Y, Zhang M. Genetic and molecular dissection of ginseng ( Panax ginseng Mey.) germplasm using high-density genic SNP markers, secondary metabolites, and gene expressions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165349. [PMID: 37575919 PMCID: PMC10416250 DOI: 10.3389/fpls.2023.1165349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023]
Abstract
Genetic and molecular knowledge of a species is crucial to its gene discovery and enhanced breeding. Here, we report the genetic and molecular dissection of ginseng, an important herb for healthy food and medicine. A mini-core collection consisting of 344 cultivars and landraces was developed for ginseng that represents the genetic variation of ginseng existing in its origin and diversity center. We sequenced the transcriptomes of all 344 cultivars and landraces; identified over 1.5 million genic SNPs, thereby revealing the genic diversity of ginseng; and analyzed them with 26,600 high-quality genic SNPs or a selection of them. Ginseng had a wide molecular diversity and was clustered into three subpopulations. Analysis of 16 ginsenosides, the major bioactive components for healthy food and medicine, showed that ginseng had a wide variation in the contents of all 16 ginsenosides and an extensive correlation of their contents, suggesting that they are synthesized through a single or multiple correlated pathways. Furthermore, we pair-wisely examined the relationships between the cultivars and landraces, revealing their relationships in gene expression, gene variation, and ginsenoside biosynthesis. These results provide new knowledge and new genetic and genic resources for advanced research and breeding of ginseng and related species.
Collapse
Affiliation(s)
- Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Mustafa Cilkiz
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
3
|
Cho J, Barido FH, Kim HJ, Kim HJ, Kim D, Shin DJ, Jang A. Effect of Calamansi Pulp Ethanol Extracts on the Meat Quality and Biogenic Amine Formation of Pork Patty during Refrigerated Storage. Food Sci Anim Resour 2023; 43:25-45. [PMID: 36789197 PMCID: PMC9890367 DOI: 10.5851/kosfa.2022.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
This study evaluated the antibacterial and antioxidant activities of ethanol extract of calamansi pulp (CPE) and its effect on quality and biogenic amine (BAs) formation in pork patties during storage. The CPE were prepared in various conditions (ethanol concentrations of 50%, 70%, and 90% with extraction periods of 3 and 6 days). The extract with potent antibacterial and antioxidant activities (90%, 6 days) was selected for addition to pork patties. Three groups were tested: Control (without extract addition), CPE addition at 0.2% w/w (0.2PCPE), and 0.4% w/w (0.4PCPE). The addition of CPE inhibited the formation of BAs, mainly cadaverine, histamine, and tyramine, in pork patties during storage. The pH and bacterial count of pork patties decreased significantly in a concentration-dependent manner following the addition of CPE. The instrumental color (CIE L*, CIE a*, and CIE b*) tended to be higher in 0.4PCPE than in the control during storage. The thiobarbituric acid reactive substances and volatile basic nitrogen (VBN) values of pork patties were affected by CPE, showing a reduction toward lipid oxidation at any storage period, and maintaining the lowest VBN value in 0.4PCPE at the final storage day. Similarly, the reduction of total BAs in pork patties was observed ranged between 3.4%-38.1% under treatment with 0.2% CPE, whereas 18.4%-51.4% under 0.4% CPE addition, suggesting significant effect of CPE to improve meat quality. These novel findings demonstrate the efficacy of 0.4% CPE as a natural compound to preserve the quality and reduce BAs formation in pork patties during storage.
Collapse
Affiliation(s)
- Jinwoo Cho
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Department of Research and Development,
Shinsegae Food, Seoul 04793, Korea
| | - Farouq Heidar Barido
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Department of Animal Science, Faculty of
Agriculture, Universitas Sebelas Maret, Surakarta 57126,
Indonesia
| | - Hye-Jin Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Hee-Jin Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Poultry Research Institute, National
Institute of Animal Science, Pyeongchang 25342, Korea
| | - Dongwook Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Dong-Jin Shin
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Aera Jang
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Corresponding author: Aera
Jang, Department of Applied Animal Science, College of Animal Life Sciences,
Kangwon National University, Chuncheon 24341, Korea, Tel: +82-33-250-8643, Fax:
+82-33-251-7719, E-mail:
| |
Collapse
|
4
|
Cho J, Barido FH, Kim HJ, Kwon JS, Kim HJ, Kim D, Hur SJ, Jang A. Effect of Extract of Perilla Leaves on the Quality Characteristics and Polycyclic Aromatic Hydrocarbons of Charcoal Barbecued Pork Patty. Food Sci Anim Resour 2023; 43:139-156. [PMID: 36789195 PMCID: PMC9890369 DOI: 10.5851/kosfa.2022.e67] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to investigate the effect of ethanolic extracts from perilla leaves (PLE) on the quality attributes and polycyclic aromatic hydrocarbons (PAHs) in charcoal-barbecued pork patties. The PLE addition and doneness had no significant effect on the pH of pork patties (p>0.05). Regardless of the concentration, the PLE significantly lower malondialdehyde concentrations and reduced the CIE L*, CIE a*, and CIE b* when compared to control. The addition of 0.2% of PLE did not adversely affect the organoleptic properties of doneness of medium and well-done pork patties. Addition of PLE at 0.4% to medium-cooked pork patties had stronger suppressing effect on the formation of light PAHs compare to control (p<0.05), also adding it to well-done pork patties had the lowest concentration of 4 PAHs and 8 PAHs, and a total of 16 PAHs (p<0.05). Therefore, PLE at 0.4% can be used for suppressing the formation of PAHs and lipid oxidation in well-cooked pork patty.
Collapse
Affiliation(s)
- Jinwoo Cho
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
- Department of Research and Development,
Shinsegae Food, Seoul 04793, Korea
| | - Farouq Heidar Barido
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
- Department of Animal Science, Faculty of
Agriculture, Universitas Sebelas Maret, Surakarta 57126,
Indonesia
| | - Hye-Jin Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
- Department of Agricultural Biotechnology,
Seoul National University, Seoul 08826, Korea
| | - Ji-Seon Kwon
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Hee-Jin Kim
- Poultry Research Institute, National
Institute of Animal Science, Pyeongchang 25342, Korea
| | - Dongwook Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Sun-Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Aera Jang
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| |
Collapse
|
5
|
Changes in stability and volatile flavor compounds of self-emulsifying chicken soup formed during the stewing process. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Barido FH, Kim HJ, Shin DJ, Kwon JS, Kim HJ, Kim D, Choo HJ, Nam KC, Jo C, Lee JH, Lee SK, Jang A. Physicochemical Characteristics and Flavor-Related Compounds of Fresh and Frozen-Thawed Thigh Meats from Chickens. Foods 2022; 11:foods11193006. [PMID: 36230082 PMCID: PMC9563284 DOI: 10.3390/foods11193006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
The physicochemical characteristics and flavor-related compounds of thigh meat derived from diverse Korean native chickens (KNC), namely Hanhyup No. 3 (HH3), Woorimatdag No 1 (WRMD 1), and Woorimatdag No 2 (WRMD 2), under fresh and frozen-thawed conditions were studied and compared with those of commercial broilers (CB). Regardless of the breed, KNC showed a higher (p < 0.05) percentage of linoleic and arachidonic acid. The highest proportion of docosahexaenoic acid was observed in WRMD 2. Despite having a higher collagen content, thigh meat derived from KNC maintained a similar texture profile in comparison to that of CB. The concentrations of most free amino acids (FAA), except for taurine, tryptophan, and carnosine, were higher in frozen-thawed meat than in fresh meat. Regarding volatile organic compounds (VOC), following freezing, the concentration of favorable VOCs increased in CB, but decreased in WRMD 1, suggesting a loss of pleasant flavor in frozen-thawed meat. This study indicated that changes in VOCs, including hydrocarbons (d-limonene, heptadecane, hexadecane, naphthalene, pentadecane, 3-methyl-, tridecane), esters (arsenous acid, tris(trimethylsilyl) ester, decanoic acid, ethyl ester, hexadecanoic acid, ethyl ester), alcohol (1-hexanol, 2-ethyl-), ketones (5,9-undecadien-2-one, 6,10-dimethyl-), and aldehydes (pentadecanal-, tetradecanal, tridecanal), may be a promising marker for distinguishing between fresh and frozen-thawed chicken thigh meat. These findings are of critical importance as preliminary data for developing high-quality chicken meat products.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hye-Jin Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Dong-Jin Shin
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Seon Kwon
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Jin Kim
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342, Korea
| | - Dongwook Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyo-Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342, Korea
| | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Jun-Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sung-Ki Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Correspondence:
| |
Collapse
|
7
|
Barido FH, Utama DT, Kim YJ, Lee SK. Fatty acid profiles and flavour-related compounds of the retorted Korean ginseng chicken soup (Samgyetang) affected by pre-treated black garlic extract. Anim Biosci 2022; 35:1080-1090. [PMID: 35507844 PMCID: PMC9271379 DOI: 10.5713/ab.21.0575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/22/2022] [Indexed: 11/27/2022] Open
Abstract
Objective This study aimed to characterize the effect of pre-treated black garlic (BG) extracts addition into retorted Korean ginseng chicken soup (Samgyetang) on the fatty acid composition and flavour-related indexes. Methods Four different treatments; Samgyetang made with a 5% (w/w) addition of garlic (G), fresh BG (FBG), oven-dried BG (DBG), or encapsulated BG (EBG) extracts were developed and compared to negative control (NC) without any extract addition. Prepared samples were cooked via retorting at 121.1°C, 1.5 kgf/cm2 for 1 h. Results The BG treated samples were higher in C18:3n3 and C18:2n6 fatty acids, with thrombogenic index was 18% to 20% lower than the NC. EBG yielded the highest umami-related nucleotides (5′-guanosine monophosphate and 5′-inosine monophosphate) and modified some free amino acid (alyne, phenylalanine and leucine) thus possessed the highest equivalent umami concentration among samples. Some individual aldehydes (pentanal, hexanal, and heptanal) were lower, while furans and volatile sulfur compounds were higher than the NC and G treatment group, indicating a potential suppression of unpleasant flavour alongwith the intensificiation of favourable flavour from the addition of BG extracts into retorted Samgyetang. Conclusion Taken together, the synergistic results of this study indicate that incorportating suitable pre-treatment of BG extract could be of critical importance for the development of the retorted Samgyetang with improved flavour and functionalities.
Collapse
|
8
|
Dao DTA, Hien LTM, Thinh NP, Thang N, Ha DV, Tam LN, Nguyen VD. Recovery of amino acids and peptides from pig bone soup using thermal pre‐treatment and enzymatic hydrolysis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dong T. A. Dao
- Department of Food Technology, Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Ly T. M. Hien
- Department of Food Technology, Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
- Faculty of Biotechnology, Ho Chi Minh City Open Univeristy, 35 ‐ 37 Ho Hao Hon St., Co Giang Ward, Dist. 1st Ho Chi Minh City Vietnam
| | - Ngo P. Thinh
- Department of Food Technology, Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
- VISSAN Joint Stock Company, 420 No Trang Long St., Binh Thanh Dist. Ho Chi Minh City Vietnam
| | - Nguyen Thang
- Department of Food Technology, Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Do V. Ha
- Management Board of Agricultural Hi‐Tech Park, The People’s Committee of Ho Chi Minh City, 214 D5 St., Binh Thanh Dist. Ho Chi Minh City Vietnam
| | - Le N. Tam
- Institute of Biotechnology and Food Technology Ho Chi Minh City Vietnam
| | - Vuong D. Nguyen
- Institute of Biotechnology and Food Technology Ho Chi Minh City Vietnam
| |
Collapse
|