1
|
Jiang L, Tian Y, Zhang H, Liu S. Molecular-level insight into the effects of low moisture and trehalose on the thermostability of β-glucosidase. Food Chem 2024; 460:140607. [PMID: 39068804 DOI: 10.1016/j.foodchem.2024.140607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The high temperature induces conformational changes in β-glucosidase, making it inactive and limiting its application field. In this paper, the effect of trehalose on the thermostability of β-glucosidase from low-moisture Hevea brasiliensis seeds was investigated. The results showed that the residual enzyme activities of β-glucosidase supplemented with trehalose after high-temperature treatment were significantly higher than that of the control group. The improvement of thermostability could be explained by low-field nuclear magnetic resonance (LF-NMR) and molecular dynamics (MD) simulations at the molecular level. Moreover, adding trehalose increased the water activity and water content of β-glucosidase, leading to a more stable conformation. Trehalose replaced some water and formed a stable network of hydrogen bonds with protein and surrounding water. The glass formed by trehalose also reduced molecular movement, thus providing good protection for enzymes.
Collapse
Affiliation(s)
- Lian Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yongli Tian
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Haide Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Shisheng Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, the Ministry of Education, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| |
Collapse
|
2
|
Mamy D, Boateng ID, Chen X. Metabolomic changes in Citrus reticulata peel after conventional and ultrasound-assisted solid-state fermentation with Aspergillus niger: A focus on flavonoid metabolism. Food Chem 2024; 467:142224. [PMID: 39632168 DOI: 10.1016/j.foodchem.2024.142224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
This study explored the changes in nutrients, metabolites, and enzyme activity in Citrus reticulata peel powders (CRPP) under conventional or ultrasound-assisted solid-state fermentation (SSF) using Aspergillus niger CGMCC 3.6189. Compared to nonfermented CRPP (NF-CRPP), ultrasound-assisted fermented CRPP (UIS-CRPP) significantly increased total protein and carotenoid levels by 85.26 % and 179.68 %, respectively, surpassing conventionally-fermented CRPP (FO-CRPP). Among the 521 identified differential metabolites, organic acids, lipids, and flavonoids were predominant. Flavonoid accumulation was primarily driven by the flavone and flavonol biosynthesis pathway, with 90.47 % and 90.00 % of differential flavonoids upregulated in FO-CRPP and UIS-CRPP, respectively. SSF significantly increased phenylalanine, tyrosine, and methionine levels, and tyrosine ammonia-lyase and β-D-glucosidase activities, with higher levels in UIS-CRPP. These findings suggest that conventional and ultrasound-assisted fermentation enhances flavonoid levels in CRPP by modulating key enzyme activities in flavonoid biosynthesis and biotransformation. Our study offers a feasible approach for producing value-added products from citrus peel waste.
Collapse
Affiliation(s)
- Daniel Mamy
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; Higher Institutes of Sciences and Veterinary Medicine (ISSMV) of Dalaba, Dalaba, Tangama P.O. Box 09, Guinea
| | - Isaac Duah Boateng
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; International Joint Research Laboratories of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Wu CM, Yang CY. Impacts of Ultrasonic Treatment for Black Soybean Okara Culture Medium Containing Choline Chloride on the β-Glucosidase Activity of Lactiplantibacillus plantarum BCRC 10357. Foods 2023; 12:3781. [PMID: 37893674 PMCID: PMC10606564 DOI: 10.3390/foods12203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The effects of ultrasonic treatment for the culture medium of solid black soybean okara with choline chloride (ChCl) on the survival and β-glucosidase activity of Lactiplantibacillus plantarum BCRC 10357 (Lp-BCRC10357) were investigated. A mixture of 3% dried black soybean okara in de Man-Rogosa-Sharpe (w/v) was used as the Oka medium. With ultrasonic treatment (40 kHz/300 W) of the Oka medium at 60 °C for 3 h before inoculation, the β-glucosidase activity of Lp-BCRC10357 at 12 h and 24 h of incubation amounted to 13.35 and 15.50 U/mL, respectively, which was significantly larger than that (12.58 U/mL at 12 h and 2.86 U/mL at 24 h) without ultrasonic treatment of the medium. This indicated that ultrasonic treatment could cause the microstructure of the solid black soybean okara to be broken, facilitating the transport of ingredients and Lp-BCRC10357 into the internal structure of the okara for utilization. For the effect of ChCl (1, 3, or 5%) added to the Oka medium (w/v) with ultrasonic treatment before inoculation, using 1% ChCl in the Oka medium could stimulate the best response of Lp-BCRC10357 with the highest β-glucosidase activity of 19.47 U/mL in 12 h of incubation, showing that Lp-BCRC10357 had a positive response when confronting the extra ChCl that acted as an osmoprotectant and nano-crowder in the extracellular environment. Furthermore, the Oka medium containing 1% ChCl with ultrasonic treatment led to higher β-glucosidase activity of Lp-BCRC10357 than that without ultrasonic treatment, demonstrating that the ultrasonic treatment could enhance the contact of ChCl and Lp-BCRC10357 to regulate the physiological behavior for the release of enzymes. In addition, the analysis of the isoflavone content and antioxidant activity of the fermented product revealed that the addition of 1% ChCl in the Oka medium with ultrasonic treatment before inoculation allowed a higher enhancement ratio for the biotransformation of isoflavone glycosides to their aglycones, with a slight enhancement in the antioxidant activity at 24 h of fermentation. This study developed a methodology by combining ultrasonic treatment with a limited amount of ChCl to allow the culture medium to acclimate Lp-BCRC10357 and release high levels of β-glucosidase, and this approach has the potential to be used in the fermentation of okara-related products as nutritional supplements in foods.
Collapse
Affiliation(s)
| | - Chun-Yao Yang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan;
| |
Collapse
|
4
|
Chen J, Wang Q, Wu Y, Wu Y, Sun Y, Ding Y, Wei Z, Manickam S, Pan S, Yang J, Tao Y. Ultrasound-assisted fermentation of ginkgo kernel juice by Lactiplantibacillus plantarum: Microbial response and juice composition development. ULTRASONICS SONOCHEMISTRY 2023; 99:106587. [PMID: 37683418 PMCID: PMC10495669 DOI: 10.1016/j.ultsonch.2023.106587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
This study is aimed to explore the feasibility of ultrasound on enhancing the fermentation properties of ginkgo kernel juice by Lactiplantibacillus plantarum Y2. Specifically, ultrasound at 20 kHz and different intensities (mild ultrasound intensity-84.42 W/L, moderate ultrasound intensity-115.50 W/L, high ultrasound intensity-173.88 W/L) with a pulse mode were applied to facilitate the fermentation process. The number of viable cells of Lactiplantibacillus plantarum Y2 increased by 5.06, 5.05 and 2.19% in the sonicated groups at 173.88, 115.50 and 84.42 W/L, compared with the non-sonicated juice after 24-h fermentation. Furthermore, mild intensity ultrasonication improved the permeability of the cell membrane, which is beneficial for the metabolism of phenolics, amino acids and organic acids. Ultrasonication increased in-vitro antioxidant activity of fermented ginkgo kernel juice by promoting the metabolism of phenolic acids, such as ferulic acid, chlorogenic and caffeic acids. At the end of fermentation, the sonicated group at 84.42 W/L has the maximum consumptions of total sugars and proteins (increased by 12.52 and 18.73%). Moreover, the reduction rate of the poison material 4'-O-methylpyridoxine (MPN) in ginkgo kernel juice increased by more than 16.40% with ultrasound treatment at 173.88 W/L after the fermentation for 48 h. Overall, ultrasound can improve the metabolizations of Lactobacillus plantarum and reduce the toxic substances, which promoted the nutritional value and flavors of ginkgo kernel juice.
Collapse
Affiliation(s)
- Jinling Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiqi Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuting Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yue Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunfei Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sivakumar Manickam
- Department of Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Impact of nutrient from aqueous extract of burdock roots and ultrasonic stress on the growth and β-glucosidase activity of Lactiplantibacillus plantarum FEL112. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022; 11:foods11192973. [PMID: 36230050 PMCID: PMC9564298 DOI: 10.3390/foods11192973] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Various potential sources of bioactive components exist in nature which are fairly underutilized due to the lack of a scientific approach that can be sustainable as well as practically feasible. The recovery of bioactive compounds is a big challenge and its use in food industry to develop functional foods is a promising area of research. Various techniques are available for the extraction of these bioactives but due to their thermolabile nature, there is demand for nonthermal or green technologies which can lower the cost of operation and decrease operational time and energy consumption as compared to conventional methods. Ultrasound-assisted extraction (UAE) is gaining popularity due to its relative advantages over solvent extraction. Thereafter, ultrasonication as an encapsulating tool helps in protecting the core components against adverse food environmental conditions during processing and storage. The review mainly aims to discuss ultrasound technology, its applications, the fundamental principles of ultrasonic-assisted extraction and encapsulation, the parameters affecting them, and applications of ultrasound-assisted extraction and encapsulation in food systems. Additionally, future research areas are highlighted with an emphasis on the energy sustainability of the whole process.
Collapse
|