1
|
Zhao Y, Zhang M, Bhandari B, Li C. Development of special nutritional balanced food 3D printing products based on the mixing of animals/plants materials: research progress, applications, and trends. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39895375 DOI: 10.1080/10408398.2025.2457420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Food 3D printing brings food processing technology into the digital age. This is a vast field that can provide entertainment experience, personalized food and specific nutritional needs. However, the limited availability of suitable food raw materials has restricted the extensive use of 3D food printing processing technique. The search for novel nutritious and healthy food materials that meet the demand for 3D food printing processing technology is core of the sustainable development of this emerging technology. The printing mechanism, precise nutrition, future outlooks and challenges of 3D food printing technology application in hybrid plant and animal food materials are also analyzed.The results demonstrate that selecting suitable animal and plant materials and mixing them into 3D food printing ingredients without adding food additives can result in printable inks, which can also improve the nutritive value and eating quality of 3D food printed products. Sustainability of novel food materials such as animal cell culture meat and microbial protein mixed with conventional food materials to realize 3D printed food can be a potential research direction. Some other issues should also be considered in future research, such as evaluation of the nutritional efficacy of the product, product stability, shelf life, production efficiency and convenience of process operation.
Collapse
Affiliation(s)
- Yonggan Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Chunli Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Lin N, Taghizadehmakoei A, Polovina L, McLean I, Santana-Martínez JC, Naese C, Moraes C, Hallam SJ, Dahmen J. 3D Bioprinting of Food Grade Hydrogel Infused with Living Pleurotus ostreatus Mycelium in Non-sterile Conditions. ACS APPLIED BIO MATERIALS 2024; 7:2982-2992. [PMID: 38587496 DOI: 10.1021/acsabm.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mycelium is the root-like network of fungi. Mycelium biocomposites prepared by template replication (molding) can function as environmentally friendly alternatives to conventional polystyrene foams, which are energy- and carbon-intensive to manufacture. Recently, several studies have shown that 3D bioprinting technologies can be used to produce high value functional mycelium products with intricate geometries that are otherwise difficult or impossible to achieve via template replication. A diverse range of nutrients, thickeners, and gelling agents can be combined to produce hydrogels suitable for 3D bioprinting. 3D bioprinting with hydrogel formulations infused with living fungi produces engineered living materials that continue to grow after bioprinting is complete. However, a hydrogel formulation optimized for intricate 3D bioprinting of Pleurotus ostreatus mycelium, which is among the strains most commonly used in mycelium biocomposite fabrication, has yet to be described. Here, we design and evaluate a versatile hydrogel formulation consisting of malt extract (nutrient), carboxymethylcellulose and cornstarch (thickeners), and agar (gelling agent), all of which are easily sourced food grade reagents. We also outline a reproducible workflow to infuse this hydrogel with P. ostreatus liquid culture for 3D bioprinting of intricate structures comprised of living P. ostreatus mycelium and characterize the changes in height and mass as well as hardness of the prints during mycelium growth. Finally, we demonstrate that the workflow does not require a sterile bioprinting environment to achieve successful prints and that the same mycelium-infused hydrogel can be supplemented with additives such as sawdust to produce mycelium biocomposite objects. These findings demonstrate that 3D bioprinting using mycelium-based feedstocks could be a promising biofabrication technique to produce engineered living materials for applications such as mushroom cultivation, food preparation, or construction of the built environment.
Collapse
Affiliation(s)
- Nicholas Lin
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Alireza Taghizadehmakoei
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Lorena Polovina
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Isobel McLean
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Juan C Santana-Martínez
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chloe Naese
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| | - Christopher Moraes
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montréal, Québec H3A 2B4, Canada
- Rosalind and Morris Goodman Cancer Research Center, McGill University, 1160 Pine Avenue West, Montréal, Québec H3A 1A3, Canada
- Division of Experimental Medicine, McGill University, 1001 Décarie Boulevard, Montréal, Québec H4A 3J1, Canada
| | - Steven James Hallam
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Graduate Program in Bioinformatics, University of British Columbia, 570 West seventh Avenue, Vancouver, British Columbia V6T 1Z4, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- ECOSCOPE Training Program, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Joseph Dahmen
- School of Architecture and Landscape Architecture, University of British Columbia, 6333 Memorial Road, Vancouver, British Columbia V6T 1Z2, Canada
| |
Collapse
|
3
|
Shi H, Zhang M, Mujumdar AS. 3D/4D printed super reconstructed foods: Characteristics, research progress, and prospects. Compr Rev Food Sci Food Saf 2024; 23:e13310. [PMID: 38369929 DOI: 10.1111/1541-4337.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Super reconstructed foods (SRFs) have characteristics beyond those of real system in terms of nutrition, texture, appearance, and other properties. As 3D/4D food printing technology continues to be improved in recent years, this layered manufacturing/additive manufacturing preparation technology based on food reconstruction has made it possible to continuously develop large-scale manufacture of SRFs. Compared with the traditional reconstructed foods, SRFs prepared using 3D/4D printing technologies are discussed comprehensively in this review. To meet the requirements of customers in terms of nutrition or other characteristics, multi-processing technologies are being combined with 3D/4D printing. Aspects of printing inks, product quality parameters, and recent progress in SRFs based on 3D/4D printing are assessed systematically and discussed critically. The potential for 3D/4D printed SRFs and the need for further research and developments in this area are presented and discussed critically. In addition to the natural materials which were initially suitable for 3D/4D printing, other derivative components have already been applied, which include hydrogels, polysaccharide-based materials, protein-based materials, and smart materials with distinctive characteristics. SRFs based on 3D/4D printing can retain the characteristics of deconstruction and reconstruction while also exhibiting quality parameters beyond those of the original material systems, such as variable rheological properties, on-demand texture, essential printability, improved microstructure, improved nutrition, and more appealing appearance. SRFs with 3D/4D printing are already widely used in foods such as simulated foods, staple foods, fermented foods, foods for people with special dietary needs, and foods made from food processingbyproducts.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
4
|
Xie S, Li H, Li N, Liu Z, Xu D, Hu L, Mo H. Lentinus edodes Powder Improves the Quality of Wheat Flour Gluten Sticks. Foods 2023; 12:foods12091755. [PMID: 37174294 PMCID: PMC10177975 DOI: 10.3390/foods12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Spicy wheat flour gluten sticks are delicious and affordable puffed snacks for young adults and even minors in China, and have a relatively simple nutritional quality. L. edodes powder (LEP) is rich in nutrients and boasts a variety of biological activities. This study evaluated the effects of different concentrations of LEP addition on the quality of wheat flour gluten sticks. The gelatinization results of the products showed that the peak viscosity decreased from 454 cP to 251 cP; the breakdown value decreased from 169 cP to 96 cP; and the setback value decreased from 381 cP to 211 cP. With the increase in LEP, the radial expansion rate (RER) of L. edodes gluten sticks (LSGS) first increased and then decreased, reaching a maximum value of 1.388 in the 10% LEP group. The oil absorption rate (OAR) of LSGS increased from 5.124% to 14.852% with the increase in the amount of LEP. Additionally, texture profile analysis showed that the hardness value increased from 1148.898 to 2055.492 g; the chewiness value increased from 1010.393 to 1499.233; and the springiness value decreased from 1.055 to 0.612. Through X-ray diffraction (XRD), it was found that the crystal type was transformed from A-type crystal to B-type and V-type crystals. Low field nuclear magnetic resonance (LF-NMR) results showed that the moisture distribution in the products was basically bound water. The scanning electron microscopy (SEM) results showed that, with the increase in the LEP amount, the surface of the products changed from rough to smooth. Sensory evaluation results indicated that the products with 10% LEP helped to maintain better taste and quality of LSGS, with an average score of 7.628, which was the most popular among consumers. This study not only increases the possible raw materials for use in extruded puffed food, but also provides a new possibility for the production of high-quality edible fungi extruded products.
Collapse
Affiliation(s)
- Suya Xie
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Na Li
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Xu
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|