1
|
Prado JPZ, Basso RC, Rodrigues CEDC. Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents. Foods 2025; 14:342. [PMID: 39941933 PMCID: PMC11817325 DOI: 10.3390/foods14030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Coffee and cocoa agribusinesses generate large volumes of byproducts, including coffee husk, coffee pulp, parchment skin, silver skin, and cocoa bean shell. Despite the rich composition of these materials, studies on biomolecule extraction with green solvents are still scarce, and further research is needed. Extraction methods using alternative solvents to obtain biomolecules must be developed to enhance the byproducts' value and align with biorefinery concepts. This article reviews the compositions of coffee and cocoa byproducts, their potential applications, and biomolecule extraction methods, focusing on alternative solvents. The extraction methods currently studied include microwave-assisted, ultrasound-assisted, pulsed electric field-assisted, supercritical fluid, and pressurized liquid extraction. At the same time, the alternative solvents encompass the biobased ones, supercritical fluids, supramolecular, ionic liquids, and eutectic solvents. Considering the biomolecule caffeine, using alternative solvents such as pressurized ethanol, supercritical carbon dioxide, ionic liquids, and supramolecular solvents resulted in extraction yields of 2.5 to 3.3, 4.7, 5.1, and 1.1 times higher than conventional solvents. Similarly, natural deep eutectic solvents led to a chlorogenic acid extraction yield 84 times higher than water. The results of this research provide a basis for the development of environmentally friendly and efficient biomolecule extraction methods, improving the utilization of agricultural waste.
Collapse
Affiliation(s)
- José Pedro Zanetti Prado
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil;
| | - Rodrigo Corrêa Basso
- Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL), Poços de Caldas 37715-400, Minas Gerais, Brazil;
| | - Christianne Elisabete da Costa Rodrigues
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil;
| |
Collapse
|
2
|
Costa ASG, Peixoto JAB, Machado S, Espírito Santo L, Soares TF, Andrade N, Azevedo R, Almeida A, Costa HS, Oliveira MBPP, Martel F, Simal-Gandara J, Alves RC. Coffee Pulp from Azores: A Novel Phytochemical-Rich Food with Potential Anti-Diabetic Properties. Foods 2025; 14:306. [PMID: 39856971 PMCID: PMC11765408 DOI: 10.3390/foods14020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Coffee pulp, a by-product of wet coffee processing, shows significant potential in the food and health domains, but its real applications remain underexplored. This work investigated the chemical composition and bioactive properties of coffee pulp from São Miguel Island (Azores, Portugal). The studied coffee pulp exhibited high fiber content (52% dw), mostly insoluble; notable mineral levels (10.6%), mainly K, Ca, and Mg; and 6% dw of total amino acids, with hydroxyproline, aspartic acid, glutamic acid, and leucine in higher amounts. Despite containing low fat (1.6% dw), mainly saturated, it also showed considerable amounts of polyunsaturated fatty acids with a favorable n6/n3 ratio (1.40) and vitamin E (α-, β-, and γ-tocopherols). Its antioxidant capacity can be partially explained by the chlorogenic acid content (9.2 mg/g dw), and caffeine (0.98%) was present in similar amounts to those observed in some arabica coffee beans. A decrease in glucose uptake in Caco-2 cells was found, but not in fructose, suggesting selective inhibition of SGLT1 and potential antidiabetic effects. These results show that Azorean coffee pulp has potential as a sustainable and bioactive ingredient for incorporation into functional foods or dietary supplements.
Collapse
Affiliation(s)
- Anabela S. G. Costa
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, E-32004 Ourense, Spain;
| | - Juliana A. Barreto Peixoto
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Susana Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Liliana Espírito Santo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Thiago F. Soares
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Nelson Andrade
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
| | - Rui Azevedo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Agostinho Almeida
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Helena S. Costa
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Maria Beatriz Prior Pinto Oliveira
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, E-32004 Ourense, Spain;
| | - Rita C. Alves
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| |
Collapse
|
3
|
Franca AS, Basílio EP, Resende LM, Fante CA, Oliveira LS. Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods 2024; 13:3935. [PMID: 39683007 DOI: 10.3390/foods13233935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for functional foods and to evaluate the effect of adding different amounts of CS on the functional and sensory attributes of chocolate cakes. The addition of CS increased the total dietary fiber content, antioxidant capacity and the contents of extractable and non-extractable phenolics in the cakes. The evaluated sensory attributes were color, smell, taste, texture and overall impression, and they were evaluated according to a 9-point hedonic scale. Internal preference maps were obtained based on the results from acceptance and "intention to buy" tests. In general, the cakes with lower coffee silverskin content (2.6% and 3.6%) had a similar level of acceptance and the cake with 4.6% coffee silverskin content was the least accepted. The most important attributes were taste and overall impression, corresponding to "like slightly" and "like moderately" for the cakes that had better acceptance. Nonetheless, even with the lowest amount of added CS (2.6%), the produced cakes could be regarded as antioxidant fiber sources (with fiber content above 3 g/100 g), thus confirming the potential of CS as a functional food additive.
Collapse
Affiliation(s)
- Adriana S Franca
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Emiliana P Basílio
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Laís M Resende
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Camila A Fante
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leandro S Oliveira
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
4
|
Barreto-Peixoto JA, Silva C, Costa ASG, Álvarez-Rivera G, Cifuentes A, Ibáñez E, Oliveira MBPP, Alves RC, Martel F, Andrade N. A Prunus avium L. Infusion Inhibits Sugar Uptake and Counteracts Oxidative Stress-Induced Stimulation of Glucose Uptake by Intestinal Epithelial (Caco-2) Cells. Antioxidants (Basel) 2023; 13:59. [PMID: 38247483 PMCID: PMC10812648 DOI: 10.3390/antiox13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Sweet cherry (Prunus avium L.) is among the most valued fruits due to its organoleptic properties and nutritional worth. Cherry stems are rich in bioactive compounds, known for their anti-inflammatory and antioxidant properties. Innumerable studies have indicated that some bioactive compounds can modulate sugar absorption in the small intestine. In this study, the phenolic profile of a cherry stem infusion was investigated, as well as its capacity to modulate intestinal glucose and fructose transport in Caco-2 cells. Long-term (24 h) exposure to cherry stem infusion (25%, v/v) significantly reduced glucose (3H-DG) and fructose (14C-FRU) apical uptake, reduced the apical-to-basolateral Papp to 3H-DG, and decreased mRNA expression levels of the sugar transporters SGLT1, GLUT2 and GLUT5. Oxidative stress (induced by tert-butyl hydroperoxide) caused an increase in 3H-DG uptake, which was abolished by the cherry stem infusion. These findings suggest that cherry stem infusion can reduce the intestinal absorption of both glucose and fructose by decreasing the gene expression of their membrane transporters. Moreover, this infusion also appears to be able to counteract the stimulatory effect of oxidative stress upon glucose intestinal uptake. Therefore, it can be a potentially useful compound for controlling hyperglycemia, especially in the presence of increased intestinal oxidative stress levels.
Collapse
Affiliation(s)
- Juliana A. Barreto-Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Cláudia Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, 4200-135 Porto, Portugal
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Green/Roasted Coffee and Silverskin Extracts Inhibit Sugar Absorption by Human Intestinal Epithelial (Caco-2) Cells by Decreasing GLUT2 Gene Expression. Foods 2022; 11:foods11233902. [PMID: 36496710 PMCID: PMC9737879 DOI: 10.3390/foods11233902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Moderate coffee ingestion has been associated with a decrease in type 2 diabetes risk, mainly due to its richness in chlorogenic acids (CGA). To explore this, extracts of green beans, roasted beans, and silverskin were prepared by aqueous ultrasound-assisted extraction and characterized by a reversed-phase high-performance liquid chromatography-photodiode array detector (RP-HPLC-DAD). The effects on the uptake of glucose and fructose by human intestinal epithelial (Caco-2) cells and the influence on the expression of sugar transporter genes (by RT-qPCR) were investigated and compared. The uptake of 3H-deoxy-D-glucose and 14C-fructose by Caco-2 cells was significantly reduced by all the extracts, with green coffee (which also contained higher amounts of CGA) achieving the highest efficiency. Although silverskin presented the lowest amounts of CGA and caffeine, it promoted an inhibitory effect similar to the effects of green/roasted beans. In the case of glucose uptake, the effect was even higher than for roasted coffee. This activity is explained by the ability of the extracts to markedly decrease GLUT2, but not GLUT5 gene expression. In addition, a decrease in SGLT1 gene expression was also found for all extracts, although not at a statistically significant rate for silverskin. This study also revealed a synergistic inhibitory effect of caffeine and 5-CQA on the uptake of sugars. Thus, silverskin appears as an interesting alternative to coffee, since the valorization of this by-product also contributes to the sustainability of the coffee chain.
Collapse
|
6
|
Nolasco A, Squillante J, Esposito F, Velotto S, Romano R, Aponte M, Giarra A, Toscanesi M, Montella E, Cirillo T. Coffee Silverskin: Chemical and Biological Risk Assessment and Health Profile for Its Potential Use in Functional Foods. Foods 2022; 11:2834. [PMID: 36140962 PMCID: PMC9498437 DOI: 10.3390/foods11182834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The coffee supply chain is characterized by a complex network with many critical and unsustainable points producing a huge amount of waste products. Among these, coffee silverskin (CS), the only by-product of the coffee roasting phase, has an interesting chemical profile that suggests potential use as a food ingredient. However, few data on its safety are available. For this reason, the purpose of the study was to assess the occurrence of chemical and biological contaminants in CS, and the resulting risk due to its potential consumption. Essential, toxic, and rare earth elements, polycyclic aromatic hydrocarbons (PAHs), process contaminants, ochratoxin A (OTA), and pesticides residues were analyzed in three classes of samples (Coffea arabica CS, Coffea robusta CS, and their blend). Furthermore, total mesophilic bacteria count (TMBC) at 30 °C, Enterobacteriaceae, yeasts, and molds was evaluated. The risk assessment was based upon the hazard index (HI) and lifetime cancer risk (LTCR). In all varieties and blends, rare earth elements, pesticides, process contaminants, OTA, and PAHs were not detected except for chrysene, phenanthrene, and fluoranthene, which were reported at low concentrations only in the arabica CS sample. Among essential and toxic elements, As was usually the most representative in all samples. Microorganisms reported a low load, although arabica and robusta CS showed lower contamination than mixed CS. Instead, the risk assessment based on the potential consumption of CS as a food ingredient did not show either non-carcinogenic or carcinogenic risk. Overall, this study provides adequate evidence to support the safety of this by-product for its potential use in functional foods.
Collapse
Affiliation(s)
- Agata Nolasco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Jonathan Squillante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Francesco Esposito
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5-80131 Naples, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma “San Raffaele”, Via di Val Cannuta, 247-00166 Roma, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 21-80126 Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 21-80126 Naples, Italy
| | - Emma Montella
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini, 5-80131 Naples, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, Portici, 100-80055 Naples, Italy
| |
Collapse
|