1
|
Liu Z, Zhang Y, Li F, Xiong P, Chen H. Efficient Biosynthesis of Phycocyanin Holo-β Subunits in Escherichia coli and Their Stability and Antioxidant Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39999307 DOI: 10.1021/acs.jafc.4c10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Phycocyanin is a biliprotein that has been used as a natural food colorant due to its brilliant color. However, their application is limited by their poor stability. In this study, biosynthesis pathways of two phycocyanin holo-β subunits, CpcBA from mesophilic Arthrospira platensis and CpcBT from thermophilic Thermosynechococcus elongatus BP-1, were constructed in Escherichia coli. Coexpression of ferredoxin (Fd), Fd-NADP+ reductase (FNR), and NADP-specific glutamate dehydrogenase (gdhA) enabled full chromophorylation of these recombinant CpcBs in recombinant E. coli. These fully chromophorylated CpcBs were visually redder and had higher hydroxyl radical and peroxyl radical scavenging activities than the partially chromophorylated CpcBs. Comparative study on thermostability showed that at high temperature the CpcBT had lower denature rate constants and longer half-life values than the CpcBA. Both proteins were stable at acidic pH (3.0-6.6), except for the CpcBA at pH 3.0. Under a combinational treatment of acid pH and heat, CpcBA showed remarkable losses (93.6-98.4%) while CpcBT showed much less losses (20.0-49.6%). All the results indicated that CpcBT was a stable phycocyanin and could potentially be developed as an excellent colorant in the food industry.
Collapse
Affiliation(s)
- Zhe Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yunjia Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Fujun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
- International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, Zibo 255000, Shandong, China
| |
Collapse
|
2
|
Chittapun S, Suwanmanee K, Kongsinkaew C, Pornpukdeewattana S, Chisti Y, Charoenrat T. Thermal degradation kinetics and purification of C-phycocyanin from thermophilic and mesophilic cyanobacteria. J Biotechnol 2025; 398:76-86. [PMID: 39617332 DOI: 10.1016/j.jbiotec.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
The natural blue colorant C-phycocyanin (C-PC) has many potential applications but its poor heat stability limits its commercial use. This study compares the production and thermal stability of C-PC from two cyanobacteria: the thermophilic Thermosynechococcus sp. TUBT-T01 and the mesophilic Synechococcus cedrorum TISTR8589. Thermosynechococcus sp. produced nearly 1.9-fold more C-PC than S. cedrorum. Batch adsorption using a chromatographic cationic ion exchange resin (Streamline Direct HST1) was used to effectively purify the C-PC. The equilibrium adsorption capacity (Qeq) of the resin for C-PC was the highest at pH 5. At this pH, the Qeq for the thermophilic C-PC was 5.5 ± 0.1 mg mL⁻¹ , whereas for the mesophilic C-PC it was 1.5 ± 0.2 mg mL⁻¹ . Purification increased the concentration of the thermophilic C-PC by 5.9-fold, and that of mesophilic C-PC by 4.2-fold. The purity ratios of the final products from the two cyanobacteria were similar at ∼2.2. At 60 °C and pH 7, the C-PC of Thermosynechococcus sp. had ∼12-times longer half-life than the mesophilic C-PC; however, the productivity of the thermophilic C-PC was comparatively low because of a low biomass productivity of Thermosynechococcus sp.
Collapse
Affiliation(s)
- Supenya Chittapun
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | - Kattiya Suwanmanee
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | - Chatchol Kongsinkaew
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | | | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand.
| |
Collapse
|
3
|
Mao M, Han G, Zhao Y, Xu X, Zhao Y. A review of phycocyanin: Production, extraction, stability and food applications. Int J Biol Macromol 2024; 280:135860. [PMID: 39307501 DOI: 10.1016/j.ijbiomac.2024.135860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
This paper aims to review the production, extraction, stability and food application of phycocyanin. Currently, light source modulation and organic solvent cultivation of high biomass phycocyanin is an important research direction. The development of nitrogen oxygen balanced system-assisted culture environments to raise production will become a trend, the green and sustainable characteristics of which compensate for the drawbacks of the former. Microfiltration, ultrafiltration, and ultrasonic cell rupture technologies address the drawbacks of solvent extraction and achieve a significant increase in purity. Biorefining technology may become the trend to achieve the highest purity and efficiency in large-scale production of phycocyanin. For the stability of phycocyanin, the development of complexes is a trend, but it should consider the suitability of the materials complex with them for production as foodstuffs. Phycocyanin is mainly developed as a natural pigment, and the main point is the coloring power and stability of natural pigments.
Collapse
Affiliation(s)
- Mengxia Mao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Guixin Han
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Yilin Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.
| | - Yuanhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.
| |
Collapse
|
4
|
Galinytė D, Bernatoniene J, Žilius M, Rysevaitė-Kyguolienė K, Savickas A, Karosienė J, Briedis V, Pauža DH, Savickienė N. In Vitro Study of Cyano-Phycocyanin Release from Hydrogels and Ex Vivo Study of Skin Penetration. Pharmaceuticals (Basel) 2024; 17:1224. [PMID: 39338386 PMCID: PMC11434783 DOI: 10.3390/ph17091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND This study explored the most suitable materials for incorporating cyano-phycocyanin (C-PC) into hydrogels, focusing on maintaining the C-PC's long-term structural integrity and stabilityNext, the release of C-PC from the hydrogels and its skin penetration were investigated. METHODS A series of 1% (w/w) C-PC hydrogels was prepared using various gelling agents and preservatives. Spectrophotometric measurements compared the amount of C-PC in the hydrogels to the initially added amount. After selecting the most suitable gelling agent and preservative, two C-PC hydrogels, with and without propylene glycol (PG) (Sigma-Aldrich, St. Louis, MO, USA), were produced for further testing. In vitro release studies utilized modified Franz-type diffusion cells, while ex vivo skin-permeation studies employed Bronaugh-type cells and human skin. Confocal laser scanning microscopy analyzed C-PC accumulation in the skin. RESULTS The findings demonstrated that sodium alginate (Sigma-Aldrich, St. Louis, MO, USA), hydroxyethyl cellulose (HEC) (Sigma-Aldrich, St. Louis, MO, USA), and SoligelTM (Givaudan, Vernier, Switzerland) are effective biopolymers for formulating hydrogels while maintaining C-PC stability. After 6 h, C-PC release from the hydrogel containing PG was approximately 10% or 728.07 (±19.35) μg/cm2, significantly higher than the nearly 7% or 531.44 (±26.81) μg/cm2 release from the hydrogel without PG (p < 0.05). The ex vivo qualitative skin-permeation study indicated that PG enhances C-PC penetration into the outermost skin layer. CONCLUSION PG's ability to enhance the release of C-PC from the hydrogel, coupled with its capacity to modify the skin barrier ex vivo, facilitates the penetration of C-PC into the stratum corneum.
Collapse
Affiliation(s)
- Daiva Galinytė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukilėlių av. 13, 50162 Kaunas, Lithuania
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukilėlių av. 13, 50162 Kaunas, Lithuania
| | - Modestas Žilius
- Department of Clinical Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukilėlių av. 13, 50162 Kaunas, Lithuania
| | - Kristina Rysevaitė-Kyguolienė
- Institute of Anatomy, Faculty of Medicine, Academy of Medicine, Lithuanian University of Health Sciences, Mickevičiaus St. 9, 44307 Kaunas, Lithuania
| | - Arūnas Savickas
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukilėlių av. 13, 50162 Kaunas, Lithuania
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania
| | - Vitalis Briedis
- Department of Clinical Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukilėlių av. 13, 50162 Kaunas, Lithuania
| | - Dainius Haroldas Pauža
- Institute of Anatomy, Faculty of Medicine, Academy of Medicine, Lithuanian University of Health Sciences, Mickevičiaus St. 9, 44307 Kaunas, Lithuania
| | - Nijolė Savickienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukilėlių av. 13, 50162 Kaunas, Lithuania
| |
Collapse
|
5
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
6
|
Minić S, Gligorijević N, Veličković L, Nikolić M. Narrative Review of the Current and Future Perspectives of Phycobiliproteins' Applications in the Food Industry: From Natural Colors to Alternative Proteins. Int J Mol Sci 2024; 25:7187. [PMID: 39000294 PMCID: PMC11241428 DOI: 10.3390/ijms25137187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.
Collapse
Affiliation(s)
- Simeon Minić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Luka Veličković
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Sun X, Zhang Z, Li W, Tian H, Yuan L, Yang X. Stability of high internal-phase emulsions prepared from phycocyanin and small-molecule sugars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2917-2927. [PMID: 38036304 DOI: 10.1002/jsfa.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The use of high internal-phase Pickering emulsions in the food industry is widespread due to their excellent stability and special rheological properties. Proteins are often used as food-grade Pickering stabilizers due to their safety and nutritious properties. Nowadays, the development and efficient utilization of novel proteins as Pickering stabilizers has become a new challenge. RESULTS Phycocyanin complexes with small-molecule sugars (SMS), formed as a result of non-thermal interactions, can serve as stabilizers for high internal-phase Pickering emulsions. The addition of SMS-enabled gel-like emulsions significantly reduced the amount of emulsifier used. When the SMS was sorbitol, the emulsion had excellent elastic properties and self-supporting ability and was stable during long-term storage, when subjected to centrifugation, and under different temperature conditions. The fluorescent property of phycocyanin was utilized to investigate the formation mechanism of the emulsion. Small-molecule sugars were able to form 'sugar-shell' structures on the surface of proteins to enhance the structural stability of proteins. Phycocyanin-SMS-stabilized emulsions provided superior protection for photosensitive and volatile substances. The retention rates of trans-resveratrol and n-hexane increased by 384.75% and 30.55%, respectively. CONCLUSION These findings will encourage the development of proteins that stabilize Pickering emulsions. They will also provide new ideas for protecting photosensitive and volatile substances. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongye Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
8
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
9
|
Narindri Rara Winayu B, Hsueh HT, Chu H. CO 2 fixation and cultivation of Thermosynechococcus sp. CL-1 for the production of phycocyanin. BIORESOURCE TECHNOLOGY 2022; 364:128105. [PMID: 36243258 DOI: 10.1016/j.biortech.2022.128105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cultivation of Cyanobacteria is preferable for CO2 fixation process due to its efficiency and production of beneficial byproducts like phycocyanin. In this study, Thermosynechococcus sp. CL-1 (TCL-1) was cultivated in a 30 L flat panel photobioreactor using a 3-fold-modified Fitzgerald medium with 113.2 mM dissolved inorganic carbon. The highest CO2 fixation rate of 21.98 ± 1.52 mg/L/h was followed by higher lipid content (49.91 % dry weight content or %dwc) than the generated carbohydrate (24.22 %dwc). TCL-1 also potentially produced phycocyanin that was dominated by C-phycocyanin (98.10 ± 6.67 mg/g) along with a lower amount of allophycocyanin and phycoerythrin under extraction using various types of solvent. Stability of phycocyanin extract was further examined during storage under various temperatures and light illuminations. Extraction with 36 % glucose solvent presented a protective effect to phycocyanin from heat and photo-damage which was proven by the kinetics study of phycocyanin degradation in this study.
Collapse
Affiliation(s)
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
10
|
High Purity Grade Phycocyanin Recovery by Decupling Cell Lysis from the Pigment Extraction: an Innovative Approach. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractPhycocyanin, a phycobiliprotein, is one of the few natural blue pigments available as food colourant, and it is largely used in food industry. We have devised an innovative two-step extraction process which allowed to obtain bright blue phycocyanin crude extracts with high purity grade P (within 2.5 and 3.5) directly from fresh biomass of Arthrospira platensis Gomont 1892 (commonly named Spirulina). We found out and for the first time exploited ammonium sulphate capability to minimize the release of water soluble phycobiliproteins in aqueous medium during ultrasound-assisted cell lysis/purification phase. The conventional sequence which is, extraction followed by purification, was reversed. The extraction phase was decoupled from biomass cell lysis. Cell lysis, accomplished by ultrasonication in ammonium sulphate solution, was merged with purification in a single step, before the pigment extraction/recovering phase. The process was entirely carried out in aqueous solutions. No downstream purification was required to obtain products suitable for the most common phycocyanin applications (i.e. foods, nutraceuticals). Production time, hours instead of days, was reduced to the advantage of the product quality. The process has the great advantages of (1) direct use of extracting solutions that cannot be used in the ordinary ultrasound-assisted extraction of phycocyanin (because of the extensive simultaneous extraction of contaminant molecules), (2) gain of high commercial value phycocyanin due to the elevated purity grade and (3) direct production of highly concentrated bright blue pigment crude extracts (up to about 5 mg mL−1) immediately in hand to the market.
Graphical Abstract
Collapse
|