1
|
Noriega-Juárez AD, Meza-Espinoza L, García-Magaña MDL, Ortiz-Basurto RI, Chacón-López MA, Anaya-Esparza LM, Montalvo-González E. Aguamiel, a Traditional Mexican Beverage: A Review of Its Nutritional Composition, Health Effects and Conservation. Foods 2025; 14:134. [PMID: 39796424 PMCID: PMC11719483 DOI: 10.3390/foods14010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Aguamiel is the sap extracted from various species of maguey (Agave spp.). This liquid is highly prized in central Mexico for its pleasing sensory qualities and nutritional value. Understanding the composition of aguamiel is crucial as it may offer beneficial effects for human health. Reports have indicated its significance as a source of essential amino acids, vitamins, minerals, and fructooligosaccharides with prebiotic potential. Additionally, aguamiel can harbor diverse microorganisms, including lactic acid bacteria (Lactococcus and Leuconostoc spp.) and yeasts, contributing antioxidant, nutritional, prebiotic, and probiotic properties. However, aguamiel is prone to rapid fermentation due to its nature, which can alter its sensory and nutritional characteristics. This review provides insight into the broad nutritional composition, microbial diversity, and metabolites beneficial to the human health of fresh aguamiel. At the same time, it reviews the technologies applied to aguamiel to preserve its nutritional properties and functional metabolites and extend its shelf life. Thus, the data included in this document may lead to greater beverage consumption and further research to find new conservation alternatives that change its organoleptic and functional properties as little as possible.
Collapse
Affiliation(s)
- Alma Delia Noriega-Juárez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Libier Meza-Espinoza
- Dirección de Ciencias Agropecuarias, Universidad Tecnológica de la Costa, Santiago Ixcuintla 63300, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Martina Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico;
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| |
Collapse
|
2
|
Zhang ZX, Xu YS, Li ZJ, Xu LW, Ma W, Li YF, Guo DS, Sun XM, Huang H. Turning waste into treasure: A new direction for low-cost production of lipid chemicals from Thraustochytrids. Biotechnol Adv 2024; 73:108354. [PMID: 38588906 DOI: 10.1016/j.biotechadv.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Feng Li
- Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
4
|
Guerra L, Ureta M, Romanini D, Woitovich N, Gómez-Zavaglia A, Clementz A. Enzymatic synthesis of fructooligosaccharides: From carrot discards to prebiotic juice. Food Res Int 2023; 170:112991. [PMID: 37316066 DOI: 10.1016/j.foodres.2023.112991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
A great volume of carrots is discarded daily worldwide because they do not meet the required shape and size standards. However, they have the same nutritional characteristics as those commercialized, and can be used in different food products. Carrot juice is an excellent matrix for the development of functional foods with prebiotic compounds, such as fructooligosaccharides (FOS). In this work, the production of FOS in situ in carrot juice was evaluated using a fructosyltransferase from Aspergillus niger, produced by solid-state fermentation on carrot bagasse. The enzyme was partially purified 12.5-fold with a total yield of 93 %, and specific activity of 59 U/mg of protein by Sephadex G-105 molecular exclusion chromatography. It was identified by nano LC-MS/MS as a β-fructofuranosidase with a 63.6 kDa MW and it allowed obtaining a FOS yield of 31.6 % in carrot juice. The result was a prebiotic juice with a final concentration of 32.4 mg/mL of FOS. Using the commercial enzyme Viscozyme L a higher yield of FOS (39.8 %) was obtained in carrot juice, corresponding to a total amount of FOS of 54.6 mg/mL. This circular economy scheme allowed the obtention of a functional juice, that may contribute to improve health of consumers.
Collapse
Affiliation(s)
- Laureana Guerra
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina.
| | - Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata B1900AJJ, Argentina
| | - Diana Romanini
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| | - Nadia Woitovich
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata B1900AJJ, Argentina
| | - Adriana Clementz
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| |
Collapse
|
5
|
Ma W, Zhang Z, Yang W, Huang P, Gu Y, Sun X, Huang H. Enhanced docosahexaenoic acid production from cane molasses by engineered and adaptively evolved Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023; 376:128833. [PMID: 36889604 DOI: 10.1016/j.biortech.2023.128833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Cane molasses (CM) is a sugar-rich agro-industrial byproduct. The purpose of this study is to synthesize docosahexaenoic acid (DHA) in Schizochytrium sp. by using CM. The single factor analysis showed that sucrose utilization was the main factor limiting the utilization of CM. Therefore, the endogenous sucrose hydrolase (SH) was overexpressed in Schizochytrium sp., which enhanced the sucrose utilization rate 2.57-fold compared to the wild type. Furthermore, adaptive laboratory evolution was used to further improve sucrose utilization from CM. Comparative proteomics and RT-qPCR were used out to analyze the metabolic differences of evolved strain grown on CM and glucose, respectively. Finally, a constant flow rate CM feeding strategy was implemented, whereby the DHA titer and lipid yield of the final strain OSH-end reached 25.26 g/L and 0.229 g/g sugar, respectively. This study demonstrated the CM is a cost-effective carbon source for industrial DHA fermentation.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Ziyi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Wenqian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Pengwei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, China
| |
Collapse
|