1
|
Šeremet D, Tuzla B, Vrsaljko D, Vukosav P, Mišić Radić T, Kuzmić S, Žižek K, Sokač K, Mandura Jarić A, Vojvodić Cebin A, Komes D. Development of new chocolate formulations by incorporating spray-dried and liposomal encapsulates of ground ivy (Glechoma hederacea L.) polyphenolic extract. Food Chem 2025; 480:143907. [PMID: 40112723 DOI: 10.1016/j.foodchem.2025.143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
In present study, innovative chocolates with spray-dried and liposomal encapsulates of ground ivy extract were developed. Encapsulates, whose morphology was studied by scanning electron (SEM) and atomic force (AFM) microscopy, were incorporated into chocolate in two ways - by direct addition into prepared chocolate mass and by addition of cocoa butter in which the encapsulates were previously homogenized. Chocolates were characterized by determination of bioactive profile and release kinetics of encapsulated polyphenols simulating in vitro digestion. Physical characterization included determination of rheological, textural and melting parameters, while sensory analysis evaluated appearance, acoustics, texture and taste. Chocolates were enriched with ground ivy polyphenols, including chlorogenic, rosmarinic acid and rutin. Prior homogenization of encapsulates in cocoa butter resulted in decrease in Casson yield stress and viscosity of chocolates, but also in higher sensory evaluations of visual appearance. The maximum melting temperature of chocolates remained within the narrow range 30.4-31.6 °C.
Collapse
Affiliation(s)
- Danijela Šeremet
- University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva Ulica 6, Zagreb, Croatia
| | - Barbara Tuzla
- University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva Ulica 6, Zagreb, Croatia
| | - Domagoj Vrsaljko
- University of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, Zagreb, Croatia
| | - Petra Vukosav
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Tea Mišić Radić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10000, Zagreb, Croatia
| | - Sunčica Kuzmić
- Forensic Science Centre "Ivan Vučetić" Zagreb, Ilica 335, Zagreb, Croatia
| | - Krunoslav Žižek
- University of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, Zagreb, Croatia
| | - Katarina Sokač
- University of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, Zagreb, Croatia
| | - Ana Mandura Jarić
- University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva Ulica 6, Zagreb, Croatia
| | - Aleksandra Vojvodić Cebin
- University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva Ulica 6, Zagreb, Croatia
| | - Draženka Komes
- University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva Ulica 6, Zagreb, Croatia.
| |
Collapse
|
2
|
Karkad AA, Pirković A, Milošević M, Stojadinović B, Šavikin K, Marinković A, Jovanović AA. Silibinin-Loaded Liposomes: The Influence of Modifications on Physicochemical Characteristics, Stability, and Bioactivity Associated with Dermal Application. Pharmaceutics 2024; 16:1476. [PMID: 39598599 PMCID: PMC11597119 DOI: 10.3390/pharmaceutics16111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The aims of the presented study were the development of four types of silibinin-loaded liposomes (multilamellar liposomes-MLVs, sonicated small unilamellar liposomes-SUVs, UV-irradiated liposomes, and lyophilized liposomes) and their physicochemical characterization and biological potential related to skin health benefits. METHODS The characterization was performed via the determination of the encapsulation efficiency (EE), particle size, polydispersity index, zeta potential, conductivity, mobility, storage stability, density, surface tension, viscosity, FT-IR, and Raman spectra. In addition, cytotoxicity on the keratinocytes and antioxidant and anti-inflammatory potential were also determined. RESULTS UV irradiation significantly changed the rheological and chemical properties of the liposomes and increased their cytotoxic effect. The lyophilization of the liposomes caused significant changes in their EE and physical characteristics, decreased their ABTS and DPPH radical scavenging potential, and increased their potential to reduce the expression of interleukin 1 beta (IL-1β) in cells treated with bacterial lipopolysaccharide. Sonication significantly changed the EE and physical and rheological properties of the liposomes, and slightly increased their cytotoxicity and reduction effect on IL-1β, while the anti-ABTS and anti-DPPH capacity of the liposomes significantly increased. All developed liposomes showed an increasing trend in particle size and a decreasing trend in zeta potential (absolute values) during storage. CONCLUSIONS Silibinin-loaded liposomes (MLVs and lyophilized) showed promising antioxidant activity (toward reactive oxygen species generated in cells) and anti-inflammatory effects (reducing macrophage inhibitory factor expression) on keratinocytes and did not lead to a change in their viability. Future perspectives will focus on wound healing, anti-aging, and other potential of developed liposomes with silibinin in sophisticated cell-based models of skin diseases, wounds, and aging.
Collapse
Affiliation(s)
- Amjed Abdullah Karkad
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
- Faculty of Medical Technology, Elmergib University, Msallata 7310500, Libya
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojan Stojadinović
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, 11000 Belgrade, Serbia;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| |
Collapse
|
3
|
Elferjane MR, Milutinović V, Jovanović Krivokuća M, Taherzadeh MJ, Pietrzak W, Marinković A, Jovanović AA. Vaccinium myrtillus L. Leaf Waste as a Source of Biologically Potent Compounds: Optimization of Polyphenol Extractions, Chemical Profile, and Biological Properties of the Extracts. Pharmaceutics 2024; 16:740. [PMID: 38931863 PMCID: PMC11206553 DOI: 10.3390/pharmaceutics16060740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The aims of the present research include (1) optimization of extraction from Vaccinium myrtillus leaf waste via investigation of plant material:medium ratio, extraction medium, and extraction period, employing extractions at room and high temperatures, or using ultrasound and microwaves (M, HAE, UAE, and MAE, respectively), (2) physicochemical characterization, and (3) investigation of extract biological potential. The statistical analysis revealed that optimal levels of parameters for the greatest polyphenolic yield were a proportion of 1:30 g/mL, ethyl alcohol 50% (v/v) during 2 min of microwave irradiation. By LC-MS analysis, 29 phenolic components were detected; HAE showed the highest richness of almost all determined polyphenols, while chlorogenic acid and quercetin 3-O-glucuronide were dominant. All extracts showed a high inhibition of Staphylococcus aureus growth. The effect of different parameters on extracts' antioxidant capacity depended on the used tests. The extracts also showed a stimulative influence on keratinocyte viability and anti-inflammatory activity (proven in cell-based ELISA and erythrocyte stabilization assays). The extraction procedure significantly affected the extraction yield (MAE ≥ maceration ≥ UAE ≥ HAE), whereas conductivity, density, surface tension, and viscosity varied in a narrow range. The presented research provides evidence on the optimal extraction conditions and technique, chemical composition, and antioxidant, antimicrobial, anti-inflammatory, and keratinocyte viability properties of bilberry extracts for potential applications in pharmacy and cosmetics.
Collapse
Affiliation(s)
- Muna Rajab Elferjane
- Faculty of Nursing and Health Sciences, University of Misurata, Alshowahda Park, 3rd Ring Road, Misurata 2478, Libya;
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia;
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| | - Mohammad J. Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 61, 503 37 Borås, Sweden;
| | - Witold Pietrzak
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| |
Collapse
|
4
|
Kakuda L, Maia Campos PMBG, Oliveira WP. Development and Efficacy Evaluation of Innovative Cosmetic Formulations with Caryocar brasiliense Fruit Pulp Oil Encapsulated in Freeze-Dried Liposomes. Pharmaceutics 2024; 16:595. [PMID: 38794256 PMCID: PMC11124447 DOI: 10.3390/pharmaceutics16050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Encapsulation and drying technologies allow the engineering of innovative raw materials from plant biodiversity, with potential applications in pharmaceutical and cosmetic fields. Lipid-based nanoencapsulation stands out for its efficiency, ease of production, and versatility in encapsulating substances, whether hydrophilic or lipophilic. This work aimed at encapsulating pequi oil in liposomes and freeze-dried liposomes to enhance its stability and functional benefits, such as skin hydration and anti-aging effects, for use in innovative cosmetic formulations. Pequi oil-extracted from the Caryocar brasiliense fruit pulp, a plant species from Brazilian plant biodiversity-is rich in secondary metabolites and fatty acids. Liposomes and dried liposomes offer controlled production processes and seamless integration into cosmetic formulations. The physicochemical analysis of the developed liposomes confirmed that the formulations are homogeneous and electrokinetically stable, as evidenced by consistent particle size distribution and zeta potential values, respectively. The gel-type formulations loaded with the dried liposomes exhibit enhanced skin hydration, improved barrier function, and refined microrelief, indicating improvements in skin conditions. These results highlight the potential of dried liposomes containing pequi oil for the development of innovative cosmeceutical products. This research contributes to the valorization of Brazilian biodiversity by presenting an innovative approach to leveraging the dermatological benefits of pequi oil in cosmetic applications.
Collapse
Affiliation(s)
| | | | - Wanderley P. Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (L.K.); (P.M.B.G.M.C.)
| |
Collapse
|
5
|
Anand V, Ksh V, Vasudev S, Kumar M, Kaur C. Investigating the effect of wall material and pressure homogenisation on encapsulation parameters and thermal stability in chia seed oil microcapsules. J Microencapsul 2024; 41:66-78. [PMID: 38096025 DOI: 10.1080/02652048.2023.2292228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
AIM To evaluate the effect of different wall material (WM) matrices followed by homogenisation to encapsulate chia seed oil (CSO) using freeze drying technology. METHODS CSO was encapsulated using three ratios (100/0, 50/50, and 100/0) of two WM matrices: MTS/WPC (modified tapioca starch-whey protein concentrate) and MD/WPC (maltodextrin-whey protein concentrate). The evaluation included encapsulation efficiency (EE), oxidative stability, and α-linolenic acid (ALA) retention. Homogenised microcapsules (-H) were then assessed for storage and thermal stability, along with cumulative oil release. RESULTS The MD-WPC-H 50/50 microcapsules had superior EE (97.32%), higher ALA retention (60.2%), storage stability (up to 30 days), higher thermal stability (up to 700 °C), and desirable oil release in simulated condition. CONCLUSION Selecting suitable WM and homogenisation is key for improving EE, storage, thermal stability, and targeted release. The CSO microcapsule can serve as a functional ingredient to improve the quality of diverse food products.
Collapse
Affiliation(s)
- Vishnu Anand
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | - Vikono Ksh
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| |
Collapse
|
6
|
Čutović N, Marković T, Carević T, Stojković D, Bugarski B, Jovanović AA. Liposomal and Liposomes-Film Systems as Carriers for Bioactives from Paeonia tenuifolia L. Petals: Physicochemical Characterization and Biological Potential. Pharmaceutics 2023; 15:2742. [PMID: 38140083 PMCID: PMC10747293 DOI: 10.3390/pharmaceutics15122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Paeonia tenuifolia L. (steppe peony) petal extract was proficiently encapsulated into liposomes and biopolymer films in the current work, both times utilizing a single-step procedure. The encapsulation efficiency, size of the particles, and index of polydispersity (PDI), as well as the ζ potential of the obtained liposomes were determined, whereas in the case of films, the test included moisture content and mechanical property assessment. Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the chemical composition and existence of numerous interactions in the systems. All the obtained encapsulates were subjected to antibacterial, antifungal and antibiofilm activity testing of the pathogens associated with human skin. The results indicated that the liposomes prepared using Phospholipon had the highest encapsulation efficiency (72.04%), making them the most favorable ones in the release study as well. The biological assays also revealed that Phospholipon was the most beneficial phospholipid mixture for the preparation of liposomes, whereas the film containing these liposomes did not have the ability to inhibit pathogen growth, making the double encapsulation of P. tenuifolia L. petal extract needless. These findings may be a first step toward the potential use of steppe peony extract-loaded films and liposomes in pharmaceutical and cosmetical industries.
Collapse
Affiliation(s)
- Natalija Čutović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tatjana Marković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| |
Collapse
|
7
|
Jovanović AA, Balanč B, Volić M, Pećinar I, Živković J, Šavikin KP. Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3063. [PMID: 37687310 PMCID: PMC10489640 DOI: 10.3390/plants12173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
In the present study, rosehip (Rosa canina L.) extract was successfully encapsulated in phospholipid liposomes using a single-step procedure named the proliposome method. Part of the obtained liposomes was subjected to UV irradiation and non-treated (native) and UV-irradiated liposomes were further characterized in terms of encapsulation efficiency, chemical composition (HPLC analysis), antioxidant capacity, particle size, PDI, zeta potential, conductivity, mobility, and antioxidant capacity. Raman spectroscopy as well as DSC analysis were applied to evaluate the influence of UV irradiation on the physicochemical properties of liposomes. The encapsulation efficiency of extract-loaded liposomes was higher than 90%; the average size was 251.5 nm; the zeta potential was -22.4 mV; and the conductivity was found to be 0.007 mS/cm. UV irradiation did not cause a change in the mentioned parameters. In addition, irradiation did not affect the antioxidant potential of the liposome-extract system. Raman spectroscopy indicated that the extract was completely covered by the lipid membrane during liposome entrapment, and the peroxidation process was minimized by the presence of rosehip extract in liposomes. These results may guide the potential application of rosehip extract-loaded liposomes in the food, pharmaceutical, or cosmetic industries, particularly when liposomal sterilization is needed.
Collapse
Affiliation(s)
- Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Bojana Balanč
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (M.V.)
| | - Mina Volić
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (M.V.)
| | - Ilinka Pećinar
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Ž.); (K.P.Š.)
| | - Katarina P. Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (J.Ž.); (K.P.Š.)
| |
Collapse
|
8
|
Elferjane MR, Jovanović AA, Milutinović V, Čutović N, Jovanović Krivokuća M, Marinković A. From Aloe vera Leaf Waste to the Extracts with Biological Potential: Optimization of the Extractions, Physicochemical Characterization, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:2744. [PMID: 37514358 PMCID: PMC10386512 DOI: 10.3390/plants12142744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In the study, the optimization of the extraction from Aloe vera leaf waste was performed via varying solid-to-solvent ratio, solvent type, extraction time, and technique (maceration, heat-, ultrasound-, and microwave-assisted extractions-HAE, UAE, and MAE, respectively). The optimal extraction conditions for achieving the highest polyphenol content are a 1:30 ratio, 70% ethanol, and 30 min of HAE. Total flavonoid and protein contents were significantly higher in the extract from MAE, while total condensed tannin content was the highest in HAE. LC-MS analysis quantified 13 anthraquinone and chromone compounds. The variations in the FT-IR spectra of the extracts obtained by different extraction procedures are minor. The influence of extraction conditions on the antioxidant ability of the extracts depended on applied antioxidant assays. The extracts possessed medium inhibition properties against Staphylococcus aureus and weak inhibitory activity against Enterococcus feacalis. The extracts had stimulative effect on HaCaT cell viability. Regarding the extraction yield, there was a significant difference between the used extraction techniques (MAE > HAE > maceration and UAE). The presented study is an initial step in the production of polyphenol-rich extracts from A. vera leaf waste aimed to be used for the potential preparation of pharmaceutical and cosmetic formulations for the skin.
Collapse
Affiliation(s)
- Muna Rajab Elferjane
- Faculty of Nursing and Health Sciences, University of Misurata, Alshowahda Park, 3rd Ring Road, Misurata 2478, Libya
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Aleksandra A Jovanović
- Institute for the Application of the Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Natalija Čutović
- Institute for Medicinal Plant Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of the Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Fadaei MR, Mohammadi M, Fadaei MS, Jaafari MR. The crossroad of nanovesicles and oral delivery of insulin. Expert Opin Drug Deliv 2023; 20:1387-1413. [PMID: 37791986 DOI: 10.1080/17425247.2023.2266992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Diabetes mellitus is one of the challenging health problems worldwide. Multiple daily subcutaneous injection of insulin causes poor compliance in patients. Development of efficient oral formulations to improve the quality of life of such patients has been an important goal in pharmaceutical industry. However, due to serious issues such as low bioavailability and instability, it has not been achieved yet. AREAS COVERED Due to functional properties of the vesicles and the fact that hepatic-directed vesicles of insulin could reach the clinical phases, we focused on three main vesicular delivery systems for oral delivery of insulin: liposomes, niosomes, and polymersomes. Recent papers were thoroughly discussed to provide a broad overview of such oral delivery systems. EXPERT OPINION Although conventional liposomes are unstable in the presence of bile salts, their further modifications such as surface coating could increase their stability in the GI tract. Bilosomes showed good flexibility and stability in GI fluids. Also, niosomes were stable, but they could not induce significant hypoglycemia in animal studies. Although polymersomes were effective, they are expensive and there are some issues about their safety and industrial scale-up. Also, we believe that other modifications such as addition of a targeting agent or surface coating of the vesicles could significantly increase the bioavailability of insulin-loaded vesicles.
Collapse
Affiliation(s)
- Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Zolqadri R, Heidari Damani M, Malekjani N, Saeed Kharazmi M, Mahdi Jafari S. Rice bran protein-based delivery systems as green carriers for bioactive compounds. Food Chem 2023; 420:136121. [PMID: 37086611 DOI: 10.1016/j.foodchem.2023.136121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Natural protein-based delivery systems have received special interest over the last few years. Different carriers are already developed in the food industry to protect, encapsulate and deliver bioactive compounds. Rice bran protein (RBP) is currently used as a carrier in encapsulating bioactives due to its excellent functional properties, great natural value, low price, good biodegradability, and biocompatibility. Recently, RBP-based carriers including emulsions, microparticles, nanoparticles, nanoemulsions, liposomes, and core-shell structures have been studied extensively in the literature. This study reviews the important characteristics of RBP in developing bioactive delivery systems. The recent progress in various modification approaches for improving RBP properties as carriers along with different types of RBP-based bioactive delivery systems is discussed. In the final part, the bioavailability and release profiles of bioactives from RBP-based carriers and the recent developments are described.
Collapse
Affiliation(s)
- Roshanak Zolqadri
- Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Maryam Heidari Damani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
11
|
Liposomal Bilayer as a Carrier of Rosa canina L. Seed Oil: Physicochemical Characterization, Stability, and Biological Potential. Molecules 2022; 28:molecules28010276. [PMID: 36615469 PMCID: PMC9821806 DOI: 10.3390/molecules28010276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Rosa canina L. seeds are rich in bioactive components that can add value to the various formulations. The focus of the study was the development of liposomes for R. canina oil to protect its sensitive compounds and prolong their shelf-life. Oil-loaded liposomes were characterized via the determination of the particle size, polydispersity index (PDI), zeta potential, conductivity, mobility, density, surface tension, viscosity, and stability. Raman and FT-IR spectroscopy were employed to investigate the chemical composition of the non-treated and UV-treated samples, and the presence of different interactions. Antioxidant and antimicrobial activities were examined as well. The liposome size was 970.4 ± 37.4 nm, the PDI 0.438 ± 0.038, the zeta potential -32.9 ± 0.8 mV, the conductivity 0.068 ± 0.002 mS/cm, the mobility -2.58 ± 0.06 µmcm/Vs, the density 0.974 ± 0.004 g/cm3, the surface tension 17.2 ± 1.4 mN/m, and the viscosity 13.5 ± 0.2 mPa•s. The Raman and FT-IR spectra showed the presence of lipids, fatty acids, polyphenols, and carotenoids. It was approved that the oil compounds were distributed inside the phospholipid bilayer and were combined with the membrane interface of the bilayer. The UV irradiation did not cause any chemical changes. However, neither the pure oil nor the oil-loaded liposomes showed any antimicrobial potential, while the antioxidant capacity of the oil-loaded liposomes was significantly low. The sizes of the liposomes did not change significantly during 60 days of storage. Due to the proven stability of the oil-loaded liposomes, as well as the liposome's ability to protect the sensitive oil compounds, their potential application in the pharmaceutical and cosmetic formulations could be investigated with a focus on the skin regeneration effects.
Collapse
|
12
|
Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films. Polymers (Basel) 2022; 14:polym14214724. [DOI: 10.3390/polym14214724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
In the present study, water extracts from banana and red beetroot peels were evaluated as a potential source of biologically active compounds for the formulation of edible films. Using spectrophotometric and HPLC-DAD methodologies, banana peel extract was found to be a valuable source of dopamine (156.08 mg L−1), while red beetroot peel extract was abundant in red-violet pigments betacyanins (90.1 mg betanin L−1). The biological activity of the extracts was studied by determining their effects on macromolecular models, including DNA (plasmid phiX RF1 DNA), protein (bovine serum albumin), and lipid (linoleic acid) models, as well as on continuous human cell lines of colon cancer Caco-2 and hepatocellular liver cancer Hep G2 at concentrations of 0.2 and 1 mg mL−1. Results showed that the extracts had no adverse effects and both were further used for the formulation of edible films using alginate in combination with three types of plant proteins—rice, peanut, and pumpkin. In general, edible films based on banana peel extract were characterized by better bioactive properties compared with the films based on red beetroot peel extract. The addition of peanut proteins into the formulations resulted in the most desirable bioactive profile of the formulated edible films, including total phenolic content and antioxidant capacity. Aside from the control sample prepared only with the alginate, the highest dopamine content was determined in the film with incorporated pumpkin proteins (10.72 mg g−1 dw), while the sample prepared with peanut proteins was richest in betacyanins (175.58 mg betanin g−1 dw).
Collapse
|
13
|
Simultaneous removal of cationic dyes from simulated industrial wastewater using sulfated alginate microparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|