1
|
Erdoğan Ü, Önder D, Önder S, Tonguç M, Ince RE. Green solvent 2-methyltetrahydrofuran (2-MeTHF) improves recovery of bioactive molecules from oilseeds and prevents lipid peroxidation in oils. Food Chem 2025; 478:143659. [PMID: 40049128 DOI: 10.1016/j.foodchem.2025.143659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
The study compared the effects of hexane and 2-methyltetrahydrofuran (MeTHF) on oil yield, stability and bioactive compounds in fig, black cumin and rosehip oils. MeTHF increased oil yield in fig (11.7 %), black cumin (28.3 %) and rosehip (13.2 %). Solvent type did not change fatty acid and tocopherol composition and 18 fatty acids were identified. MeTHF increased number of phenolic compounds from 9 to 16 and amount of total tocopherol, phenolics, chlorophylls and carotenoids in oils. The antioxidant activity of oils was measured by CUPRAC and DPPH assays and MeTHF extracted oils had significantly higher antioxidant capacity. Oxidative stability test revealed that hexane-extracted oils peroxide value (PV) increased dramatically in fig (182.7 %) and rosehip (221.1 %) oils, while PV of MeTHF extracted oils was not significant in fig and rosehip oils. Black cumin oil was stable for both solvents. Results show that MeTHF is more efficient for obtaining oils with bioactive molecules to improve stability and quality.
Collapse
Affiliation(s)
- Ümit Erdoğan
- Rose and Aromatic Plants Application and Research Center, Isparta University of Applied Sciences, Isparta 32200, Türkiye.
| | - Damla Önder
- Department of Biology, Faculty of Engineering and Natural Sciences, Süleyman Demirel University, Isparta 32260, Türkiye
| | - Sercan Önder
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32200, Türkiye
| | - Muhammet Tonguç
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32200, Türkiye
| | - Riza Eren Ince
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32200, Türkiye
| |
Collapse
|
2
|
Rahman MTA, Yagi S, Zengin G, Eyupoglu OE, Spina R, Grosjean J, Abdalla AMA, Laurain‐Mattar D. Nutraceutical Potential of Oilseeds and By-Products (Cakes) of Three Underutilized Malvaceae Trees Grown in Sudan. Food Sci Nutr 2025; 13:e70080. [PMID: 40051604 PMCID: PMC11882478 DOI: 10.1002/fsn3.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
The nutraceutical potential of seed oils and cakes of Adansonia digitata, Grewia tenax, and Thespesia garckeana was evaluated by determining their chemical profile and examining their antioxidant and enzyme inhibitory properties. Oils of G. tenax and T. garckeana were rich in polyunsaturated fatty acids. The cake methanolic extract of T. garckeana revealed the highest antiradical (44.67 mg trolox equivalent (TE)/g extract) and metal chelating (26.38 mg EDTA equivalent/g extract) properties, while the oil of G. tenax displayed the highest Cu++ (180.62 mg TE/g extract) and Fe+++ (82.07 mg TE/g extract) reducing capacity. Pelargonidin and rutin were the dominant antioxidant compounds. The oil of A. digitata displayed the highest anti-acetylcholinesterase (2.44 mg galantamine equivalent (GALAE)/g extract) and butyrylcholinesterase (2.10 mg GALAE/g extract) activity, while its cake exhibited the best α-glucosidase inhibitory activity (1.46 acarbose equivalent (ACAE)/g extract). The cake of T. garckeana exerted the highest α-amylase inhibitory effect (0.71 mmol ACAE/g extract). The highest anti-tyrosinase activity (10.88 mg kojic acid equivalent/g extract) was recorded from the cake of G. tenax. These results indicated that these seeds could be a rich source of antioxidants that target diseases associated with oxidative stress, like diabetes and certain neurological disorders.
Collapse
Affiliation(s)
- Munna Tahir Abdel Rahman
- Department of Botany, Faculty of ScienceUniversity of KhartoumKhartoumSudan
- Faculty of Clinical NutritionSudan International UniversityKhartoumSudan
| | - Sakina Yagi
- Department of Botany, Faculty of ScienceUniversity of KhartoumKhartoumSudan
| | - Gökhan Zengin
- Department of Biology, Science FacultySelcuk UniversityKonyaTurkey
| | - Ozan Emre Eyupoglu
- Department of Biochemistry, School of PharmacyIstanbul Medipol UniversityTurkey
| | | | | | - Ashraf M. A. Abdalla
- Department of Forest Products and Industries, Faculty of ForestryUniversity of KhartoumKhartoumSudan
| | | |
Collapse
|
3
|
Majeed I, Nisa MU, Rahim MA, Ramadan MF, Al‐Asmari F, Alissa M, Zongo E. Role of Seed Therapy on Estrous and Non-Estrous Cycle in Healthy Female Rats. Food Sci Nutr 2025; 13:e4692. [PMID: 39807431 PMCID: PMC11725979 DOI: 10.1002/fsn3.4692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Seed cycling therapy (SCT) involves the consumption of specific seeds during the follicular and luteal phases of the menstrual cycle to help balance reproductive hormones. This study aimed to investigate the effects of SCT on healthy female Wistar albino rats to prevent hormonal imbalances. For SCT, a seed mixture (SM1) consisting of flax, pumpkin, and soybeans (estrogenic seeds) was administered at doses of 5.4, 4, 8, and 12 g per 100 g of diet during the non-estrous phase. Another seed mixture (SM2) comprising sunflower, sesame, and chickpeas (also estrogenic) was given at doses of 3.12, 8, and 8 g per 100 g during the estrous phase. A total of 36 female Wistar albino rats were divided into four groups, each containing nine rats: Basal diet, seed cycling 1, seed cycling 2, and seed cycling 3 (SC3). All diets were isocaloric and iso-nitrogenous. The results showed that body weight, feed intake, and water consumption were significantly decreased in the SC3 group (p < 0.05), with increased nutrient digestibility. The tested diets led to significant positive changes in levels of follicle-stimulating hormone, luteinizing hormone, high-density lipoproteins (HDL-c), low-density lipoproteins (LDL-c), LDL-c/HDL-c ratio, aspartate aminotransferase, and alanine aminotransferase across both phases of the cycle. There was also a notable increase in estrogen, testosterone, prolactin, and insulin levels (p < 0.05). Ovarian histology results showed normal morphology in the SC3 group, suggesting that this dosage was the most effective. The findings indicate that further studies are warranted to explore the genetic mechanisms underlying phytoestrogen action during reproductive stages.
Collapse
Affiliation(s)
- Iqra Majeed
- Department of Nutritional Sciences, Faculty of Medical SciencesGovernment College UniversityFaisalabadPakistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health SciencesTimes InstituteMultanPakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical SciencesUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Fahad Al‐Asmari
- Department of Food and Nutrition SciencesCollege of Agricultural and Food Sciences, King Faisal UniversityAl‐AhsaSaudi Arabia
| | - Mohammed Alissa
- Department of Medical LaboratoryCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Eliasse Zongo
- Laboratory of Research and Teaching in Animal Health and BiotechnologyNazi Boni UniversityBobo‐DioulassoBurkina Faso
| |
Collapse
|
4
|
Cuchillo-Hilario M, Fournier-Ramírez MI, Díaz Martínez M, Montaño Benavides S, Calvo-Carrillo MC, Carrillo Domínguez S, Carranco-Jáuregui ME, Hernández-Rodríguez E, Mora-Pérez P, Cruz-Martínez YR, Delgadillo-Puga C. Animal Food Products to Support Human Nutrition and to Boost Human Health: The Potential of Feedstuffs Resources and Their Metabolites as Health-Promoters. Metabolites 2024; 14:496. [PMID: 39330503 PMCID: PMC11434278 DOI: 10.3390/metabo14090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Recent attention has been given to animal feeding and its impact on human nutrition. Animal feeding is essential for meeting human dietary needs, making it a subject of significant interest and investigation. This review seeks to outline the current understanding of this disciplinary area, with a focus on key research areas and their potential implications. The initial part of the paper discusses the importance of animal feed resources and recognizes their crucial role in guaranteeing sufficient nutrition for both humans and animals. Furthermore, we analyzed the categorization of animal feeds based on the guidelines established by the National Research Council. This approach offers a valuable structure for comprehending and classifying diverse types of animal feed. Through an examination of this classification, we gain an understanding of the composition and nutritional content of various feedstuffs. We discuss the major categories of metabolites found in animal feed and their impact on animal nutrition, as well as their potential health advantages for humans. Flavonoids, polyphenols, tannins, terpenoids, vitamins, antioxidants, alkaloids, and essential oils are the primary focus of the examination. Moreover, we analyzed their possible transference into animal products, and later we observed their occurrence in foods from animal sources. Finally, we discuss their potential to promote human health. This review offers an understanding of the connections among the major metabolites found in feedstuffs, their occurrence in animal products, and their possible impact on the health of both animals and humans.
Collapse
Affiliation(s)
- Mario Cuchillo-Hilario
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Mareli-Itzel Fournier-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Margarita Díaz Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Sara Montaño Benavides
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Concepción Calvo-Carrillo
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Silvia Carrillo Domínguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Elena Carranco-Jáuregui
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Elizabeth Hernández-Rodríguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Patricia Mora-Pérez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Yesica R Cruz-Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| |
Collapse
|
5
|
Tufail T, Khan T, Bader Ul Ain H, Morya S, Shah MA. Garden cress seeds: a review on nutritional composition, therapeutic potential, and industrial utilization. Food Sci Nutr 2024; 12:3834-3848. [PMID: 38873486 PMCID: PMC11167195 DOI: 10.1002/fsn3.4096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 06/15/2024] Open
Abstract
The growing preference for natural remedies has resulted in increased use of medicinal plants. One of the most significant and varied plants is garden cress (Lepidium sativum), which has large concentrations of proteins, fatty acids, minerals, and vitamins. It also contains a wide range of bioactive components, including kaempferol glucuronide, gallic acid, protocatechuic acid, coumaric acid, caffeic acid, terpenes, glucosinolates, and many more. These substances, which include antioxidant, thermogenic, depurative, ophthalmic, antiscorbutic, antianemic, diuretic, tonic, laxative, galactogogue, aphrodisiac, rubefacient, and emmengogue qualities, add to the medicinal and functional potential of garden cress. An extensive summary of the phytochemical profile and biological activity of garden cress seeds is the main goal of this review. Research showed that garden cress is one of the world's most underutilized crops, even with its nutritional and functional profile. Consequently, the goal of this review is to highlight the chemical and nutritional makeup of Lepidium sativum while paying particular attention to its bioactive profile, various health claims, therapeutic benefits, and industrial applications.
Collapse
Affiliation(s)
- Tabussam Tufail
- School of Food and Biological Engineering Jiangsu UniversityZhenjiangJiangsuChina
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
- Faculty of Health and Life SciencesINTI International UniversityNilaiMalaysia
| | - Tehreem Khan
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Huma Bader Ul Ain
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Sonia Morya
- Department of Food Technology & NutritionLovely Professional UniversityPhagwara, JalandharPunjabIndia
| | - Mohd Asif Shah
- Department of EconomicsKabridahar UniversitySomaliEthiopia
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and TechnologyChitkara UniversityRajpuraPunjabIndia
- Division of Research and DevelopmentLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
6
|
Li Z, Xiang F, Huang X, Liang M, Ma S, Gafurov K, Gu F, Guo Q, Wang Q. Properties and Characterization of Sunflower Seeds from Different Varieties of Edible and Oil Sunflower Seeds. Foods 2024; 13:1188. [PMID: 38672861 PMCID: PMC11048903 DOI: 10.3390/foods13081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Sunflower seeds, oil, and protein powder are rich in nutritional value, but the quality of different varieties of sunflower seeds is quite different, and the comprehensive comparative analysis characteristics of edible and oil sunflower seeds are still unclear. The comprehensive analysis and comparison of the raw material indicators, physicochemical properties, and processing characteristics of four edible and four oil sunflower seed varieties were investigated. The results showed that the engineering properties, texture characteristics, single-cell structure, and oil, protein, and starch granule distribution were different between edible and oil sunflower seeds. The composition of fatty acids and amino acids was different among edible, oil sunflower seeds and different varieties. The oleic acid (18.72~79.30%) and linoleic acid (10.11~51.72%) were the main fatty acids in sunflower seed oil, and in amino acid composition, the highest content was glutamic acid (8.88~11.86 g/100 g), followed by aspartic acid (3.92~4.86 g/100 g) and arginine (4.03~4.80 g/100 g). Sunflower meal proteins were dominated by 11S globulin and 2S albumin, and the secondary structure was dominated by β-folding, with -SH and S-S varying greatly among different varieties. Sunflower meal proteins vary widely in terms of functional properties among different varieties, and specialized quality screening was necessary. This study provided a reference and theoretical support for understanding sunflower seeds to further promote the processing and utilization of sunflower seeds.
Collapse
Affiliation(s)
- Zhenyuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| | - Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| | - Xuegang Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| | - Manzhu Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| | - Sarina Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| | - Karim Gafurov
- Bukhara Engineering and Technological Institute, Bukhara 200100, Uzbekistan;
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| | - Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (Z.L.); (F.X.); (X.H.); (M.L.); (S.M.); (F.G.); (Q.W.)
| |
Collapse
|
7
|
da Conceição AR, da Silva A, Juvanhol LL, Marcadenti A, Bersch-Ferreira ÂC, Weber B, Shivappa N, Bressan J. The Brazilian Cardioprotective Nutritional (BALANCE) Program improves diet quality in patients with established cardiovascular disease: Results from a multicenter randomized controlled trial. Nutr Res 2024; 121:82-94. [PMID: 38056033 DOI: 10.1016/j.nutres.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Dietary modifications are essential strategies for cardiovascular disease prevention. However, studies are needed to investigate the diet quality of individuals undergoing secondary prevention in cardiology and who received dietary intervention based on cardiovascular disease management. We prospectively evaluated the diet quality in the Brazilian Cardioprotective Nutritional Program Trial (BALANCE Program Trial). We hypothesized that the BALANCE Program could improve patients' dietary pattern according to different indices of diet quality such as the Dietary Inflammatory Index (DII); the dietary total antioxidant capacity; overall, healthful, and unhealthful Plant-Based Diet Index (PDI, hPDI, and uPDI, respectively); and modified Alternative Healthy Eating Index (mAHEI). This multicenter randomized, controlled trial included patients aged ≥45 years randomly assigned to either the experimental or control group. Data from 2185 participants at baseline and after 12, 24, 36, and 48 months showed that the intervention group (n = 1077) had lower mean values of DII and higher dietary total antioxidant capacity, PDI, hPDI, and mAHEI than the control group. The results also showed differences between the follow-up times for DII, hPDI, and uPDI (48 months vs baseline) and for PDI and mAHEI (24 months vs baseline), regardless of group. The interaction analysis demonstrated that the intervention group showed better results than the control group at 12, 24, 36, and 48 months for the DII and at months 12, 36, and 48 for the mAHEI. Our results provide prospective evidence that the BALANCE Program improved the diet quality in those in secondary cardiovascular prevention according to different indices, with the intervention group showing better results than the control group.
Collapse
Affiliation(s)
| | - Alessandra da Silva
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Aline Marcadenti
- Hcor Research Institute, HCor (IP-Hcor), São Paulo, SP, Brazil; Graduate Program in Health Sciences (Cardiology), Instituto de Cardiologia/Fundação Universitária de Cardiologia do Rio Grande do Sul (IC/FUC), Porto Alegre, RS, Brazil
| | - Ângela Cristine Bersch-Ferreira
- Hcor Research Institute, HCor (IP-Hcor), São Paulo, SP, Brazil; Hospital Beneficência Portuguesa de São Paulo, PROADI-SUS Office, São Paulo, SP, Brazil
| | | | - Nitin Shivappa
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
8
|
Kaur G, Kaur N, Wadhwa R, Tushir S, Yadav DN. Techno-functional attributes of oilseed proteins: influence of extraction and modification techniques. Crit Rev Food Sci Nutr 2023; 65:1518-1537. [PMID: 38153305 DOI: 10.1080/10408398.2023.2295434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Plant-based protein isolates and concentrates are nowadays becoming popular due to their nutritional, functional as well as religious concerns. Among plant proteins, oilseeds, a vital source of valuable proteins, are continuously being explored for producing protein isolates/concentrates. This article delineates the overview of conventional as well as novel methods for the extraction of protein and their potential impact on its hydration, surface properties, and rheological characteristics. Moreover, proteins undergo several modifications using physical, chemical, and biological techniques to enhance their functionality by altering their microstructure and physical performance. The modified proteins hold a pronounced scope in novel food formulations. An overview of these protein modification approaches and their effects on the functional properties of proteins have also been presented in this review.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Navjot Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Ritika Wadhwa
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Surya Tushir
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Deep Narayan Yadav
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| |
Collapse
|
9
|
Saleem K, Hayat Z, Tariq Z, Riaz T, Azam M. Profiling of phenolic compounds, antimicrobial, antioxidant, and hemolytic activity of mango seed kernel using different optimized extraction systems. J Food Sci 2023; 88:5002-5011. [PMID: 37889081 DOI: 10.1111/1750-3841.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Mango seed kernels (MSKs) have been reported to show antioxidant, antibacterial, and anti-inflammatory properties. This study explores the influence of different optimized extraction systems on the extraction of MSK. The effects on gallic acid (GA) content, total phenolic content (TPC), total flavonoid content (TFC), antioxidant, antimicrobial, and hemolytic activity of MSK extracts from different extraction systems (65.45% ethanol-ultrasound assisted extraction [UAE], 62% ethanol-incubator shaker, 19.4% ethanol-UAE, and 100% water-UAE) were assessed. Based on the results, a nonsignificant difference in phenolic (p = 0.222), flavonoids (p = 0.058), antioxidant (p = 0.165), and antimicrobial activity (p = 0.193) against Staphylococcus aureus whereas a significant difference (p < 0.0001) in hemolytic, GA content, and antimicrobial activity against Clostridium perfringens was observed. Among different extraction systems, aqueous extraction showed significantly lower hemolytic (1.09%) and higher GA content (4.72 mg/g) and comparable results in all other experiments; yield (32.40%), TPC (58.79 mg/g), TFC (2.16 mg/g), and antioxidant (73.19%). Hence, it has been concluded that aqueous extraction system could be considered a sustainable extraction system for practical applications. PRACTICAL APPLICATION: Aqueous extraction system could be a sustainable option for extraction of mango seed kernel for practical applications as it is readily available, cheap, nonflammable, and nontoxic.
Collapse
Affiliation(s)
- Kinza Saleem
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zafar Hayat
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Zara Tariq
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tuba Riaz
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Azam
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
10
|
Noreen S, Tufail T, Ul Ain HB, Awuchi CG. Pharmacological, nutraceutical, and nutritional properties of flaxseed ( Linum usitatissimum): An insight into its functionality and disease mitigation. Food Sci Nutr 2023; 11:6820-6829. [PMID: 37970400 PMCID: PMC10630793 DOI: 10.1002/fsn3.3662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 11/17/2023] Open
Abstract
Flaxseed (Linum usitatissimum L.) is derived from the flax plant, an annual herb. The primary relevance of flaxseed is in the human nutrition sector, where it is emerging as a significant functional food component due to its high level of active chemicals, which have been linked to health benefits. Flaxseed may be consumed in numerous forms, including milled, oil, and bakery items. The phytochemicals that are present in flaxseed have greatly drawn interest as bioactive molecules beneficial for health. It is naturally enriched with alpha-linolenic acid, omega-3 fatty acid, lignin, secoisolariciresinol diglucoside, and fiber which are physiologically active in the protection of some chronic illnesses such as cancer, diabetes, cardiovascular disease, and cerebrovascular stroke. Furthermore, the benefits of flaxseed eating have been demonstrated in the animal nutrition industry, resulting in healthier food from animal origin. In reality, the fatty acid profile of meat and fat in swine and poultry is directly impacted by the source of fat in the diet. Feeding omega-3-enriched diets with flaxseed will improve the omega-3 content in eggs and meat, enriching the products. The current study focuses on the latest evidence on the chemical makeup of flaxseed and its positive benefits.
Collapse
Affiliation(s)
- Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of LahoreLahorePakistan
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, The University of LahoreLahorePakistan
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiangChina
| | - Huma Bader Ul Ain
- University Institute of Diet and Nutritional Sciences, The University of LahoreLahorePakistan
| | | |
Collapse
|
11
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
12
|
Ratusz K, Wroniak M, Ścibisz I. Special Issue: Bioactive Compounds, Nutritional Quality, and Oxidative Stability of Edible Oils and By-Products of Their Extraction. Foods 2023; 12:3133. [PMID: 37628132 PMCID: PMC10453837 DOI: 10.3390/foods12163133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Edible oils (refined, virgin, and cold-pressed oils) are one of the most important components of the daily human diet and have a considerable influence on the proper functioning of our body [...].
Collapse
Affiliation(s)
- Katarzyna Ratusz
- Division of Fats and Oils Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Małgorzata Wroniak
- Division of Fats and Oils Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Iwona Ścibisz
- Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
13
|
Walayat N, Yurdunuseven-Yıldız A, Kumar M, Goksen G, Öztekin S, Lorenzo JM. Oxidative stability, quality, and bioactive compounds of oils obtained by ultrasound and microwave-assisted oil extraction. Crit Rev Food Sci Nutr 2023; 64:9974-9991. [PMID: 37272493 DOI: 10.1080/10408398.2023.2219452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vegetable oils are extracted from oilseeds, fruits and other parts of plants. The method used in oil extraction is of great importance, as it affects both the quality of the final product and the environment. It is desirable that the extraction method be minimally costly, fast, environmentally friendly, and produce oil of high quality and quantity. Common oil extraction methods are mechanical pressing and solvent extraction, and these methods have advantages and disadvantages over each other. Mechanical extraction and solvent extraction are controversial due to poor product quality and high environmental impacts. This review presents applications where conventional oil extraction processes are assisted by microwave or ultrasound. It is necessary to evaluate the impact of ultrasound and microwave-assisted extraction on the quality of the extracted oil and also to compare the results with those of conventional extraction methods. For this purpose, this review discusses the effects of microwave and ultrasound-assisted extraction on the physicochemical, oxidation indices, bioactive compounds, and antioxidant properties of oil extracted from oil seeds and fruits. Furthermore, this review provides readers with in-depth information on the mechanisms involved, their use, and the impact of operating conditions. The yield and quality of the oil obtained by these processes can vary depending on parameters such as microwave power, ultrasound power, processing time, and temperature. Finally, the review also discusses the challenges and advantages of the industrial application of these technologies.
Collapse
Affiliation(s)
- Noman Walayat
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| |
Collapse
|
14
|
Usman I, Saif H, Imran A, Afzaal M, Saeed F, Azam I, Afzal A, Ateeq H, Islam F, Shah YA, Shah MA. Innovative applications and therapeutic potential of oilseeds and their by-products: An eco-friendly and sustainable approach. Food Sci Nutr 2023; 11:2599-2609. [PMID: 37324916 PMCID: PMC10261773 DOI: 10.1002/fsn3.3322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 06/17/2023] Open
Abstract
The risk of inadequate management of agro-waste is an emerging challenge. However, the economic relevance of agro-waste valorization is one of the key strategies to ensure sustainable development. Among the agro-waste, oilseed waste and its by-products are usually seen as mass waste after the extraction of oils. Oilseed by-products especially oilseed cakes are a potential source of protein, fiber, minerals, and antioxidants. Oilseed cakes contain high value-added bioactive compounds which have great significance among researchers to develop novel foods having therapeutic applications. Moreover, these oilseed cakes might be employed in the pharmaceutical and cosmetic industries. Thus, as a result of having desirable characteristics, oilseed by-products can be more valuable in wide application in the food business along with the preparation of supplements. The current review highlights that plentiful wastes or by-products from oilseeds are wasted if these underutilized materials are not properly valorized or effectively utilized. Hence, promising utilization of oilseeds and their wastes not only assists to overcome environmental concerns and protein insecurity but also helps to achieve the goals of zero waste and sustainability. Furthermore, the article also covers the production and industrial applications of oilseeds and by-products along with the potential role of oilseed cakes and phytochemicals in the treatment of chronic diseases.
Collapse
Affiliation(s)
- Ifrah Usman
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Hina Saif
- Department of Food Sciences TechnologyChulalongkorn UniversityBangkokThailand
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Iqra Azam
- Department of Food SciencesGovernment College Women University FaisalabadFaisalabadPakistan
| | - Atka Afzal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Fakhar Islam
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mohd Asif Shah
- Department of Economics, College of Business and EconomicsKebri Dehar UniversityJigjigaEthiopia
- Adjunct Faculty, University Centre for Research & DevelopmentChandigarh University, GharuanMohaliIndia
| |
Collapse
|
15
|
Tian Y, Zhou Y, Kriisa M, Anderson M, Laaksonen O, Kütt ML, Föste M, Korzeniowska M, Yang B. Effects of fermentation and enzymatic treatment on phenolic compounds and soluble proteins in oil press cakes of canola (Brassica napus). Food Chem 2023; 409:135339. [PMID: 36599288 DOI: 10.1016/j.foodchem.2022.135339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
To develop novel processes for valorizing agro-industry side-streams, canola (Brassica napus) oil press cakes (CPC) were treated with lactic acid bacteria, carbohydrase, and protease. Altogether 29 protein-rich liquid fractions were obtained, of which the composition was analyzed using chromatographic and mass spectrometric methods. A clear association was revealed between the treatments and phenolic profile. Applying certain lactic acid bacteria enhanced the release of sinapic acid, sinapine, glycosylated kaempferols, and other phenolic compounds from CPC. Co-treatment using protease and Lactiplantibacillus plantarum was effective in degrading these compounds. The fraction obtained after 16 h of hydrolysis (with Protamex® of 2% dosage) and 48 h of fermentation (using L. plantarum) contained the lowest phenolic content (0.2 g/100 g DM) and a medium level of soluble proteins (78 g/100 g) among all samples studied. The fractions rich in soluble proteins and low in phenolics are potential food ingredients with improved bioavailability and sensory properties.
Collapse
Affiliation(s)
- Ye Tian
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Ying Zhou
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Marie Kriisa
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Maret Anderson
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Mary-Liis Kütt
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Maike Föste
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
16
|
Mipeshwaree Devi A, Khedashwori Devi K, Premi Devi P, Lakshmipriyari Devi M, Das S. Metabolic engineering of plant secondary metabolites: prospects and its technological challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1171154. [PMID: 37251773 PMCID: PMC10214965 DOI: 10.3389/fpls.2023.1171154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Plants produce a wide range of secondary metabolites that play vital roles for their primary functions such as growth, defence, adaptations or reproduction. Some of the plant secondary metabolites are beneficial to mankind as nutraceuticals and pharmaceuticals. Metabolic pathways and their regulatory mechanism are crucial for targeting metabolite engineering. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated system has been widely applied in genome editing with high accuracy, efficiency, and multiplex targeting ability. Besides its vast application in genetic improvement, the technique also facilitates a comprehensive profiling approach to functional genomics related to gene discovery involved in various plant secondary metabolic pathways. Despite these wide applications, several challenges limit CRISPR/Cas system applicability in genome editing in plants. This review highlights updated applications of CRISPR/Cas system-mediated metabolic engineering of plants and its challenges.
Collapse
Affiliation(s)
| | | | | | | | - Sudripta Das
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
| |
Collapse
|
17
|
The Effects of Nutrient Signaling Regulators in Combination with Phytocannabinoids on the Senescence-Associated Phenotype in Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23158804. [PMID: 35955938 PMCID: PMC9368899 DOI: 10.3390/ijms23158804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Identifying effective anti-aging compounds is a cornerstone of modern longevity, aging, and skin-health research. There is considerable evidence of the effectiveness of nutrient signaling regulators such as metformin, resveratrol, and rapamycin in longevity and anti-aging studies; however, their potential protective role in skin aging is controversial. In light of the increasing appearance of phytocannabinoids in beauty products without rigorous research on their rejuvenation efficacy, we decided to investigate the potential role of phytocannabinoids in combination with nutrient signaling regulators in skin rejuvenation. Utilizing CCD-1064Sk skin fibroblasts, the effect of metformin, triacetylresveratrol, and rapamycin combined with phytocannabinoids on cellular viability, functional activity, metabolic function, and nuclear architecture was tested. We found triacetylresveratrol combined with cannabidiol increased the viability of skin fibroblasts (p < 0.0001), restored wound-healing functional activity (p < 0.001), reduced metabolic dysfunction, and ameliorated nuclear eccentricity and circularity in senescent fibroblasts (p < 0.01). Conversely, metformin with or without phytocannabinoids did not show any beneficial effects on functional activity, while rapamycin inhibited cell viability (p < 0.01) and the speed of wound healing (p < 0.001). Therefore, triacetylresveratrol and cannabidiol can be a valuable source of biologically active substances used in aging and more studies using animals to confirm the efficacy of cannabidiol combined with triacetylresveratrol should be performed.
Collapse
|