1
|
Thakur M, Andola HC, Silva AS. Unveiling techniques and exploring the potential of Myconutraceticals: Analyzing current applications and future prospects. Food Chem 2025; 466:142162. [PMID: 39615350 DOI: 10.1016/j.foodchem.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
The escalating demand for natural, nutritionally rich food products underscores the significance of exploring the fungal kingdom, comprising yeast, lichens, molds, and mushrooms, as an abundant reservoir of nutritionalcompounds, secondary metabolites and bioactive components. This paper delves into the nutritional profiles of lichen, yeast, and mushrooms, emphasizing their role as prominent sources of myco-nutraceuticals and functional foods. The growing popularity of eco-friendly extraction techniques for mycochemicals is noted, alongside the exploration of established methods for qualitative and quantitative mycochemical analysis. Notably, studies have affirmed that the incorporation of mushroom and yeast extracts, and their derived compounds, enhances the nutritional profile of meals without compromising desirable dietary attributes. The biological health-promoting properties inherent in extracts and chemicals are also discussed. Anticipated trends the incorporation of myconutrients into functional foods and dietary supplements are highlighted. Finally, challenges hindering the optimal utilization of myconutraceuticals are scrutinized.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, India.
| | - Harish Chandra Andola
- School of Environment and Natural Resources (SENR), Doon University, Uttrakhand, India
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centre for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
2
|
Kurl S, Kaur S, Mittal N, Kaur G. Mushrooms and Colorectal Cancer: Unveiling Mechanistic Insights and Therapeutic Innovations. Phytother Res 2025; 39:480-493. [PMID: 39528260 DOI: 10.1002/ptr.8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Nature has bestowed us with an abundant reservoir of resources that besides having nutritional value, are prolific mines of bioactive constituents with a plethora of medicinal activities. Mushrooms have been used since centuries in traditional system of medicine for their purported health benefits including anticancer activities. Thorough research, spanning over centuries in Japan, China, Korea, and the USA, has established the unique properties of mushrooms and their extractives in the prevention and treatment of various types cancer. The aim of the review article is to provide a comprehensive overview of the existing literature highlighting the potential relationship between mushrooms and colorectal cancer. Different databases such as PubMed, Web of Science, Google Scholar, and ScienceDirect were searched and a total of 62 articles and two book chapters were reviewed, and data were extracted. Multiple studies have demonstrated that mushrooms exhibit anticancer activities, effectively reducing adverse side effects such as nausea, myelosuppression, anemia, and sleeplessness. Furthermore, they have been shown to mitigate drug resistance following chemotherapy and radiation therapy. Certain species such as Antrodia, Pleurotus, Ganoderma, Lentinula, Hericium, Cantharellus, Clitocybe, Coprinopsis, Trametes, Sparassis, Lactarius, and so on manifest anticancer activity in colon. The article can help improve the scientific understanding of the co-relationship between mushrooms and colorectal cancer. This may help in advancing the research directions and integrating the mushroom-based strategies into current treatment protocols of colorectal cancer.
Collapse
Affiliation(s)
- Samridhi Kurl
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| | - Snimmer Kaur
- General William Polyclinic, Patiala, Punjab, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| |
Collapse
|
3
|
Yang Q, Chang SL, Tian YM, Li W, Ren JL. Glucan polysaccharides isolated from Lactarius hatsudake Tanaka mushroom: Structural characterization and in vitro bioactivities. Carbohydr Polym 2024; 337:122171. [PMID: 38710561 DOI: 10.1016/j.carbpol.2024.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with β-(1,3)-Glcp as the main chain and β-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.
Collapse
Affiliation(s)
- Qiao Yang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Song-Lin Chang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yi-Ming Tian
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jia-Li Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
4
|
Shen A, Tan Y, Shen B, Liu L, Li J, Tan Z, Zeng L. The Soil Bacterial Community Structure in a Lactarius hatsudake Tanaka Plantation during Harvest. Microorganisms 2024; 12:1376. [PMID: 39065144 PMCID: PMC11278682 DOI: 10.3390/microorganisms12071376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Lactarius hatsudake Tanaka is a mycorrhizal edible mushroom with an appealing taste and rich nutrition. It is also a significant food and has medicinal value. In this study, the plantation of L. hatsudake during the harvest period was taken as the research object, and this article explores which bacteria in the soil contribute to the production and growth of L. hatsudake. The soil of the control (CK) and the soil of the mushroom-producing area [including the soil of the base of the mushroom (JT) and the mycorrhizal root soil (JG)] was collected in the plantation. The three sites' bacterial community structure and soil diversity were analyzed using high-throughput sequencing technology, and a molecular ecological network was built. Soil bacteria in the L. hatsudake plantation had 28 tribes, 74 classes, 161 orders, 264 families, 498 genera, and 546 species. The dominant phyla were Proteobacteria and Acidobacteria, and the dominant genera were Burkholderia_Caballeronia_Paraburkholderia, Acidothermus, Bradyrhizobium, Candidatus_Xiphinematobacter, and Granulicella. The α-diversity of soil bacteria in JT was significantly lower than that in JG and CK, and the β-diversity in JT samples was significantly different from that in JG and CK samples. The size and complexity of the constructed network were smaller in JT samples than in JG and CK samples, and the stability was higher in JT samples than in JG and CK samples. The positive correlation between species in JT samples was dominant. The potential mycorrhizal helper bacteria (MHB) species of L. hatsudake was determined using correlation and differential group analysis. The results support future research on mycorrhizal synthesis, plantation management, and the function of microorganisms in the soil rhizosphere of L. hatsudake.
Collapse
Affiliation(s)
- Airong Shen
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (A.S.); (Y.T.); (J.L.)
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Yun Tan
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (A.S.); (Y.T.); (J.L.)
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Baoming Shen
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Lina Liu
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Jilie Li
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (A.S.); (Y.T.); (J.L.)
| | - Zhuming Tan
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
5
|
Neamțu AA, Maghiar TA, Turcuș V, Maghiar PB, Căpraru AM, Lazar BA, Dehelean CA, Pop OL, Neamțu C, Totolici BD, Mathe E. A Comprehensive View on the Impact of Chlorogenic Acids on Colorectal Cancer. Curr Issues Mol Biol 2024; 46:6783-6804. [PMID: 39057047 PMCID: PMC11276415 DOI: 10.3390/cimb46070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Chlorogenic acids are plant secondary metabolites, chemically-polyphenols with similar biological activity, formed through the esterification of quinic acid and hydrocinnamic acid moieties. They are best known for their high concentration in coffee and other dietary sources and the antioxidant properties that they exhibit. Both chlorogenic acids and plant extracts containing significant amounts of the compounds show promising in vitro activity against colorectal cancer. With coffee being the most popular drink in the world, and colorectal cancer at an unfortunate peak in incidence and mortality, the mechanisms through which the anti-tumorigenic effect of chlorogenic acids could be functionalized for CRC prevention seem appealing to study. Therefore, this review aims to enable a better understanding of the modes of action of chlorogenic acids in combating carcinogenesis, with a focus on cell cycle arrest, the induction of apoptosis, and the modulation of Wnt, Pi3K/Akt, and MAPK signal transduction pathways, alongside the reduction in the number of inflammatory cytokines and chemokines and the counterintuitive beneficial elevation of oxidative stress.
Collapse
Affiliation(s)
- Andreea-Adriana Neamțu
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-A.N.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
| | - Teodor Andrei Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, Universității Str., No. 1, 410087 Oradea, Romania; (T.A.M.); (P.B.M.)
- Clinical County Emergency Hospital of Oradea, Gheorghe Doja Str., No. 65, 410169 Oradea, Romania
- Pelican Hospital, Corneliu Coposu Str., No. 2, 410450 Oradea, Romania
| | - Violeta Turcuș
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
- National Institute for Economic Research “Costin C. Kiritescu” of the Romanian Academy/Centre for Mountain Economy (CE-MONT), 725700 Suceava, Romania
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, Universității Str., No. 1, 410087 Oradea, Romania; (T.A.M.); (P.B.M.)
- Clinical County Emergency Hospital of Oradea, Gheorghe Doja Str., No. 65, 410169 Oradea, Romania
- Pelican Hospital, Corneliu Coposu Str., No. 2, 410450 Oradea, Romania
| | - Anca-Maria Căpraru
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
- Poiana Mare Psychiatry Hospital, Gării Str., No. 40, 207470 Poiana Mare, Romania
| | - Bianca-Andreea Lazar
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
| | - Cristina-Adriana Dehelean
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-A.N.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ovidiu Laurean Pop
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Str., No. 1, 410081 Oradea, Romania;
| | - Carmen Neamțu
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
| | - Bogdan Dan Totolici
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
| | - Endre Mathe
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str., No. 138, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Junior TFB, Lima NM, Carli GP, M Cachuba R, J Guarneire G, J Tabai B, M Abrão R, G Barbosa S, Machado LS, S Nunes J, S Machado F, Andrade TDJAS, Br Castro S, Vaz BG, A Amaral E, S Alves CC, Carli AP. In vitro antitumor effects of aqueous extract and protease inhibitors from Sterculia striata st. Hil. et naud and metabolite profiling. Nat Prod Res 2024:1-6. [PMID: 38319135 DOI: 10.1080/14786419.2024.2302326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
The present study aims to assess the cytotoxic effect of the aqueous and protease inhibitors extracts of Sterculia striata on breast cancer cell lines. The in vitro results showed significant reductions in the highest concentrations from the S. striata seed extract for all cell lines. The aqueous extract reduced the viability by up to 35% in the MCF-7, 25% in the 4T1, and 35% in the MDA-MB-231 cell lines. Regarding the protease inhibitor extract, a 50% reduction in cell viability was observed in the MDA-MB-231 at concentration of 333 µg/mL. The aqueous and the protease inhibitor extracts showed mild reduction in the viability of macrophage cell lines. Chemical characterisation analysis revealed several polyphenols such as flavonoids, tannins, phenolic acids, and other secondary metabolites including terpenes, steroids, fatty acids, and organic acids, which may be related to the promising bioactivity observed. The S. striata showed antitumor activity, emphasising its pharmacological potential.
Collapse
Affiliation(s)
- Tadeu F Braga Junior
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Nerilson M Lima
- Department of Chemistry, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriela P Carli
- Medical school, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberta M Cachuba
- Medical school, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gracimério J Guarneire
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Beatriz J Tabai
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Roberta M Abrão
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Samuel G Barbosa
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Lucas S Machado
- Department of Chemistry, Universidade Federal de Goiás, Goiânia, Brazil
| | - Jander S Nunes
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Fabiana S Machado
- Medical school, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Sandra Br Castro
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Boniek G Vaz
- Department of Chemistry, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ernani A Amaral
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| | - Caio Cesar S Alves
- Medical school, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra P Carli
- Department of Biochemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, DiamantinaBrazil
| |
Collapse
|
7
|
Zhu H, Chen Z, Hu Y, Li G, Yao X, Cao L. Nutritional value, elemental bioaccumulation and antioxidant activity of fruiting bodies and mycelial cultures of an unrecorded wild Lactarius hatsudake from Nanyue mountainous region in China. Food Res Int 2023; 173:113358. [PMID: 37803660 DOI: 10.1016/j.foodres.2023.113358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
An unrecorded wild mushroom Lactarius hatsudake from Nanyue mountainous region in China was identified. Subsequently, comparative investigation on the nutritional value, elemental bioaccumulation, and antioxidant activity was performed in the fruiting body (FB) and mycelium (MY) samples of this species. It revealed that the contents of moisture (87.66 ± 0.16 g/100 g fw) and ash (6.97 ± 0.16 g/100 g dw) were significantly higher in FB, and the total carbohydrate, fat, and protein concentrations of FB were similar to those in MY. Among nutritionally important elements, FB possessed higher concentrations of potassium (37808.61 ± 1237.38 mg/kg dw), iron (470.69 ± 85.54 mg/kg dw), and zinc (136.13 ± 5.16 mg/kg dw), whereas MY was a better source of magnesium (1481.76 ± 18.03 mg/kg dw), calcium (2203.87 ± 69.61 mg/kg dw), and sodium (277.44 ± 22.93 mg/kg dw). According to the health risk estimation, FB might pose an aluminum-related health problem when a prolonged period of exposure, while MY was risk-free for consumers. The results of antioxidant capacity (1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays) in FB and MY were within the range of 104.19 ± 5.70 mg ascorbic acid equivalents (AAE)/g to 169.50 ± 4.94 mg AAE/g, and half maximal effective concentration EC50 values ranged from 0.23 ± 0.01 mg/mL to 0.62 ± 0.05 mg/mL. The aqueous extracts of MY demonstrated a strong ABTS radical scavenging capacity with the highest AAE value.
Collapse
Affiliation(s)
- Hanyu Zhu
- College of Life Science, Hengyang Normal University, Hengyang 421000, China; Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang 421008, China.
| | - Zheng Chen
- College of Life Science, Hengyang Normal University, Hengyang 421000, China; Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang 421008, China
| | - Yujing Hu
- College of Nanyue, Hengyang Normal University, Hengyang 421000, China
| | - Geqing Li
- College of Life Science, Hengyang Normal University, Hengyang 421000, China
| | - Xiaoqian Yao
- College of Life Science, Hengyang Normal University, Hengyang 421000, China
| | - Limin Cao
- College of Life Science, Hengyang Normal University, Hengyang 421000, China; Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang 421008, China
| |
Collapse
|
8
|
Chen M, Lin W, Li N, Wang Q, Zhu S, Zeng A, Song L. Therapeutic approaches to colorectal cancer via strategies based on modulation of gut microbiota. Front Microbiol 2022; 13:945533. [PMID: 35992678 PMCID: PMC9389535 DOI: 10.3389/fmicb.2022.945533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of global incidence and second in terms of death toll among malignant tumors. Gut microbiota are involved in the formation, development, and responses to different treatments of CRC. Under normal physiological conditions, intestinal microorganisms protect the intestinal mucosa, resist pathogen invasion, and regulate the proliferation of intestinal mucosal cells via a barrier effect and inhibition of DNA damage. The composition of gut microbiota and the influences of diet, drugs, and gender on the composition of the intestinal flora are important factors in the early detection of CRC and prediction of the results of CRC treatment. Regulation of gut microbiota is one of the most promising new strategies for CRC treatment, and it is essential to clarify the effect of gut microbiota on CRC and its possible mechanisms to facilitate the prevention and treatment of CRC. This review discusses the role of gut microbiota in the pathogenesis of CRC, the potential of gut microbiota as biomarkers for CRC, and therapeutic approaches to CRC based on the regulation of gut microbiota. It might provide new ideas for the use of gut microbiota in the prevention and treatment of CRC in the near future and thus reduce the incidence of CRC.
Collapse
Affiliation(s)
- Maohua Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Nan Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Sciences, Chengdu, China
- Anqi Zeng,
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Linjiang Song,
| |
Collapse
|