1
|
Kharazian N, Dehkordi FJ, Xiang CL. Metabolomics-based profiling of five Salvia L. (Lamiaceae) species using untargeted data analysis workflow. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:113-143. [PMID: 39003613 DOI: 10.1002/pca.3423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION The genus Salvia L., a member of the family Lamiaceae, is a keystone genus with a wide range of medicinal properties. It possesses a rich metabolite source that has long been used to treat different disorders. OBJECTIVES Due to a deficiency of untargeted metabolomic profiling in the genus Salvia, this work attempts to investigate a comprehensive mass spectral library matching, computational data annotations, exclusive biomarkers, specific chemotypes, intraspecific metabolite profile variation, and metabolite enrichment by a case study of five medicinal species of Salvia. MATERIAL AND METHODS Aerial parts of each species were subjected to QTRAP liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis workflow based on untargeted metabolites. A comprehensive and multivariate analysis was acquired on the metabolite dataset utilizing MetaboAnalyst 6.0 and the Global Natural Products Social Molecular Networking (GNPS) Web Platform. RESULTS The untargeted approach empowered the identification of 117 metabolites by library matching and 92 nodes annotated by automated matching. A machine learning algorithm as substructural topic modeling, MS2LDA, was further implemented to explore the metabolite substructures, resulting in four Mass2Motifs. The automated library newly discovered a total of 23 metabolites. In addition, 87 verified biomarkers of library matching, 58 biomarkers of GNPS annotations, and 11 specific chemotypes were screened. CONCLUSION Integrative spectral library matching and automated annotation by the GNPS platform provide comprehensive metabolite profiling through a workflow. In addition, QTRAP LC-MS/MS with multivariate analysis unveiled reliable information about inter and intraspecific levels of differentiation. The rigorous investigation of metabolite profiling presents a large-scale overview and new insights for chemotaxonomy and pharmaceutical studies.
Collapse
Affiliation(s)
- Navaz Kharazian
- Department of Botany, Central Laboratory, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Farzaneh Jafari Dehkordi
- Department of Botany, Central Laboratory, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
- Department of Biotechnology, Faculty of New Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Chun-Lei Xiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Falcó I, Randazzo W, Sánchez G. Antiviral Activity of Natural Compounds for Food Safety. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:280-296. [PMID: 38884930 PMCID: PMC11422275 DOI: 10.1007/s12560-024-09605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Gastroenteritis and hepatitis are the most common illnesses resulting from the consumption of food contaminated with human enteric viruses. Several natural compounds have demonstrated antiviral activity against human enteric viruses, such as human norovirus and hepatitis A virus, while little information is available for hepatitis E virus. Many in-vitro studies have evaluated the efficacy of different natural compounds against human enteric viruses or their surrogates. However, only few studies have investigated their antiviral activity in food applications. Among them, green tea extract, grape seed extract and carrageenans have been extensively investigated as antiviral natural compounds to improve food safety. Indeed, these extracts have been studied as sanitizers on food-contact surfaces, in produce washing solutions, as active fractions in antiviral food-packaging materials, and in edible coatings. The most innovative applications of these antiviral natural extracts include the development of coatings to extend the shelf life of berries or their combination with established food technologies for improved processes. This review summarizes existing knowledge in the underexplored field of natural compounds for enhancing the safety of viral-contaminated foods and underscores the research needs to be covered in the near future.
Collapse
Affiliation(s)
- Irene Falcó
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain.
- Department of Microbiology and Ecology, University of Valencia, C/Doctor Moliner, 50, 46100, Burjassot, Valencia, Spain.
| | - Walter Randazzo
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
- Universidad Internacional de Valencia, Valencia, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| |
Collapse
|
3
|
Edis Z, Bloukh SH. Thymol, a Monoterpenoid within Polymeric Iodophor Formulations and Their Antimicrobial Activities. Int J Mol Sci 2024; 25:4949. [PMID: 38732168 PMCID: PMC11084924 DOI: 10.3390/ijms25094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
4
|
Edis Z, Bloukh SH, Sara HA, Bloukh IH. Green Synthesized Polymeric Iodophors with Thyme as Antimicrobial Agents. Int J Mol Sci 2024; 25:1133. [PMID: 38256211 PMCID: PMC10815993 DOI: 10.3390/ijms25021133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern for the future of mankind. Common antibiotics fail in the treatment of microbial infections at an alarming rate. Morbidity and mortality rates increase, especially among immune-compromised populations. Medicinal plants and their essential oils, as well as iodine could be potential solutions against resistant pathogens. These natural antimicrobials abate microbial proliferation, especially in synergistic combinations. We performed a simple, one-pot synthesis to prepare our formulation with polyvinylpyrrolidone (PVP)-complexed iodine (I2), Thymus Vulgaris L. (Thyme), and Aloe Barbadensis Miller (AV). SEM/EDS, UV-vis, Raman, FTIR, and XRD analyses verified the purity, composition, and morphology of AV-PVP-Thyme-I2. We investigated the inhibitory action of the bio-formulation AV-PVP-Thyme-I2 against 10 selected reference pathogens on impregnated sterile discs, surgical sutures, cotton gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thyme-I2 were studied by disc diffusion methods and compared with those of the antibiotics gentamycin and nystatin. The results confirm AV-PVP-Thyme-I2 as a strong antifungal and antibacterial agent against the majority of the tested microorganisms with excellent results on cotton bandages and face masks. After storing AV-PVP-Thyme-I2 for 18 months, the inhibitory action was augmented compared to the fresh formulation. Consequently, we suggest AV-PVP-Thyme-I2 as an antimicrobial agent against wound infections and a spray-on contact killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Hamed Abu Sara
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Iman Haj Bloukh
- College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
5
|
Greff B, Sáhó A, Lakatos E, Varga L. Biocontrol Activity of Aromatic and Medicinal Plants and Their Bioactive Components against Soil-Borne Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:706. [PMID: 36840053 PMCID: PMC9958657 DOI: 10.3390/plants12040706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Soil-borne phytopathogens can have detrimental effects on both cereal and horticultural crops resulting in serious losses worldwide. Due to their high efficiency and easy applicability, synthetic pesticides are still the primary choice in modern plant disease control systems, but stringent regulations and increasing environmental concerns make the search for sustainable alternatives more pressing than ever. In addition to the incorporation of botanicals into agricultural practices, the diversification of cropping systems with aromatic and medicinal plants is also an effective tool to control plant diseases through providing nutrients and shaping soil microbial communities. However, these techniques are not universally accepted and may negatively affect soil fertility if their application is not thoroughly controlled. Because the biocontrol potential of aromatic and medicinal plants has been extensively examined over the past decades, the present study aims to overview the recent literature concerning the biopesticide effect of secondary metabolites derived from aromatic and medicinal plants on important soil-borne plant pathogens including bacteria, fungi, and nematodes. Most of the investigated herbs belong to the family of Lamiaceae (e.g., Origanum spp., Salvia spp., Thymus spp., Mentha spp., etc.) and have been associated with potent antimicrobial activity, primarily due to their chemical constituents. The most frequently tested organisms include fungi, such as Rhizoctonia spp., Fusarium spp., and Phytophthora spp., which may be highly persistent in soil. Despite the intense research efforts dedicated to the development of plant-based pesticides, only a few species of aromatic herbs are utilized for the production of commercial formulations due to inconsistent efficiency, lack of field verification, costs, and prolonged authorization requirements. However, recycling the wastes from aromatic and medicinal plant-utilizing industries may offer an economically feasible way to improve soil health and reduce environmental burdens at the same time. Overall, this review provides comprehensive knowledge on the efficiency of aromatic herb-based plant protection techniques, and it also highlights the importance of exploiting the residues generated by aromatic plant-utilizing sectors as part of agro-industrial processes.
Collapse
Affiliation(s)
- Babett Greff
- Department of Food Science, Albert Casimir Faculty at Mosonmagyarovar, Szechenyi Istvan University, 15-17 Lucsony Street, 9200 Mosonmagyarovar, Hungary
| | - András Sáhó
- Wittmann Antal Multidisciplinary Doctoral School in Plant, Animal, and Food Sciences, Szechenyi Istvan University, 2 Var Square, 9200 Mosonmagyarovar, Hungary
- Kisalfoldi Agricultural Ltd., 1 Fo Street, 9072 Nagyszentjanos, Hungary
| | - Erika Lakatos
- Department of Food Science, Albert Casimir Faculty at Mosonmagyarovar, Szechenyi Istvan University, 15-17 Lucsony Street, 9200 Mosonmagyarovar, Hungary
| | - László Varga
- Department of Food Science, Albert Casimir Faculty at Mosonmagyarovar, Szechenyi Istvan University, 15-17 Lucsony Street, 9200 Mosonmagyarovar, Hungary
| |
Collapse
|
6
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
7
|
Kurnia D, Putri SA, Tumilaar SG, Zainuddin A, Dharsono HDA, Amin MF. In silico Study of Antiviral Activity of Polyphenol Compounds from Ocimum basilicum by Molecular Docking, ADMET, and Drug-Likeness Analysis. Adv Appl Bioinform Chem 2023; 16:37-47. [PMID: 37131997 PMCID: PMC10149097 DOI: 10.2147/aabc.s403175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
Aim The SARS-CoV-2 virus is a disease that has mild to severe effects on patients, which can even lead to death. One of the enzymes that act as DNA replication is the main protease, which becomes the main target in the inhibition of the SARS-CoV-2 virus. In finding effective drugs against this virus, Ocimum basilicum is a potential herbal plant because it has been tested to have high phytochemical content and bioactivity. Apigenin-7-glucuronide, dihydrokaempferol-3-glucoside, and aesculetin are polyphenolic compounds found in Ocimum basilicum. Purpose The purpose of this study was to analyze the mechanism of inhibition of the three polyphenolic compounds in Ocimum basilicum against the main protease and to predict pharmacokinetic activity and the drug-likeness of a compound using the Lipinski Rule of Five. Patients and Methods The method used is to predict the molecular docking inhibition mechanism using Autodock 4.0 tools and use pkcsm and protox online web server to analyze ADMET and Drug-likeness. Results The binding affinity for apigenin-7-glucuronide was -8.77 Kcal/mol, dihydrokaempferol-3-glucoside was -8.96 Kcal/mol, and aesculetin was -5.79 Kcal/mol. Then, the inhibition constant values were 375.81 nM, 270.09 nM, and 57.11 µM, respectively. Apigenin-7-glucuronide and dihydrokaempferol-3-glucoside bind to the main protease enzymes on the active sites of CYS145 and HIS41, while aesculetin only binds to the active sites of CYS145. On ADMET analysis, these three compounds met the predicted pharmacokinetic parameters, although there are some specific parameters that must be considered especially for aesculetin compounds. Meanwhile, on drug-likeness analysis, apigenin-7-glucuronide and dihydrokaempferol-3-glucoside compounds have one violation and aesculetin have no violation. Conclusion Based on the data obtained, Apigenin-7-glucuronide and dihydrokaempferol-3-glucoside are compounds that have more potential to have an antiviral effect on the main protease enzyme than aesculetin. Based on pharmacokinetic parameters and drug-likeness, three compounds can be used as lead compounds for further research.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Correspondence: Dikdik Kurnia, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia, Tel/Fax +62-22-7794391, Email
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Sefren Geiner Tumilaar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Meiny Faudah Amin
- Dental Conservation, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| |
Collapse
|
8
|
In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage. Foods 2022; 11:foods11162475. [PMID: 36010475 PMCID: PMC9407435 DOI: 10.3390/foods11162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The antioxidant and antibacterial properties of four essential oils (oregano essential oil (OEO), tea tree essential oil (TTEO), wild orange essential oil (WOEO), and clove leaf essential oil (CLEO)) were determined. The in-vitro experiment indicated that CLEO had the highest total phenolic content and DPPH scavenging activity, and OEO displayed the highest antibacterial effect, so they were applied to maintain the quality of shrimp for further study. In-situ study, the total viable counts of shrimp were inhibited from 9.05 log CFU/g to 8.18 and 8.34 log CFU/g by 2% of OEO and CLEO treated alone on 10 d. The melanosis ratio was also retarded from 38.16% to 28.98% and 26.35% by the two essential oils. The inhibitory effects of OEO and CLEO on the increase of PPO activity, weight loss, and TCA-soluble peptides, and the decreasing tendency of whiteness, the contents of myofibrillar and sarcoplasmic proteins were also founded. The samples treated with 1% OEO + 1% CLEO had better quality than those treated alone. Therefore, the combination of OEO and CLEO had a synergistic effect, which displayed the highest efficiency to prevent the melanosis, bacterial growth, and protein hydrolysis of shrimp.
Collapse
|