1
|
Kurek M, Pišonić P, Ščetar M, Janči T, Čanak I, Vidaček Filipec S, Benbettaieb N, Debeaufort F, Galić K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance-A Review. Antioxidants (Basel) 2024; 13:1417. [PMID: 39594558 PMCID: PMC11591116 DOI: 10.3390/antiox13111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh fish is among the most nutritive foodstuffs, but it is also the most perishable one. Therefore, huge efforts have been made to find the most suitable tools to deliver fish of the highest quality to exigent consumers. Scientific studies help the industry to exploit the newest findings to scale up emerging industrial technologies. In this review article, the focus is on the latest scientific findings on edible films used for fish coatings and storage. Since today's packaging processing and economy are governed by sustainability, naturality underpins packaging science. The synthesis of edible coatings, their components, processing advantages, and disadvantages are outlined with respect to the preservation requirements for sensitive fish. The requirements of coating properties are underlined for specific scenarios distinguishing cold and freezing conditions. This review raises the importance of antioxidants and their role in fish storage and preservation. A summary of their impact on physical, chemical, microbiological, and sensory alterations upon application in real fish is given. Studies on their influence on product stability, including pro-oxidant activity and the prevention of the autolysis of fish muscle, are given. Examples of lipid oxidation and its inhibition by the antioxidants embedded in edible coatings are given together with the relationship to the development of off-odors and other unwanted impacts. This review selects the most significant and valuable work performed in the past decade in the field of edible coatings whose development is on the global rise and adheres to food waste and sustainable development goals 2 (zero hunger), 3 (good health and well-being), and 12 (responsible consumption and production).
Collapse
Affiliation(s)
- Mia Kurek
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Petra Pišonić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Mario Ščetar
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Tibor Janči
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Iva Čanak
- Laboratory for General Microbiology and Food Microbiology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sanja Vidaček Filipec
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Nasreddine Benbettaieb
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Frédéric Debeaufort
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Kata Galić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| |
Collapse
|
2
|
Wang B, Liu K, Wei G, He A, Kong W, Zhang X. A Review of Advanced Sensor Technologies for Aquatic Products Freshness Assessment in Cold Chain Logistics. BIOSENSORS 2024; 14:468. [PMID: 39451681 PMCID: PMC11506179 DOI: 10.3390/bios14100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
The evaluation of the upkeep and freshness of aquatic products within the cold chain is crucial due to their perishable nature, which can significantly impact both quality and safety. Conventional methods for assessing freshness in the cold chain have inherent limitations regarding specificity and accuracy, often requiring substantial time and effort. Recently, advanced sensor technologies have been developed for freshness assessment, enabling real-time and non-invasive monitoring via the detection of volatile organic compounds, biochemical markers, and physical properties. The integration of sensor technologies into cold chain logistics enhances the ability to maintain the quality and safety of aquatic products. This review examines the advancements made in multifunctional sensor devices for the freshness assessment of aquatic products in cold chain logistics, as well as the application of pattern recognition algorithms for identification and classification. It begins by outlining the categories of freshness criteria, followed by an exploration of the development of four key sensor devices: electronic noses, electronic tongues, biosensors, and flexible sensors. Furthermore, the review discusses the implementation of advanced pattern recognition algorithms in sensor devices for freshness detection and evaluation. It highlights the current status and future potential of sensor technologies for aquatic products within the cold chain, while also addressing the significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Baichuan Wang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Kang Liu
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| | - Guangfen Wei
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.); or (A.H.)
| | - Aixiang He
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.); or (A.H.)
| | - Weifu Kong
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Xiaoshuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Jayan H, Gao S, Zhou R, Yosri N, Zou X, Guo Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem 2024; 448:139051. [PMID: 38522300 DOI: 10.1016/j.foodchem.2024.139051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Interest in the use of sensors based on metal-organic frameworks (MOFs) to detect food pollutants has been growing recently due to the desirable characteristics of MOFs, including uniform structures, large surface area, ultrahigh porosity and easy-to-functionalize surface. Fundamentally, this review offers an excellent solution using MOFs-based sensors (e.g., fluorescent, electrochemical, electrochemiluminescence, surface-enhanced Raman spectroscopy, and colorimetric sensors) to detect food contaminants such as pesticide residues, mycotoxins, antibiotics, food additives, and other hazardous candidates. More importantly, their application scenarios and advantages in food detection are also introduced in more detail. Therefore, this systematic review analyzes detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles utilized in preparing MOFs-based sensors. Additionally, the main limitations of each sensing type, along with the enhancement mechanisms of MOFs in addressing efficient sensing are discussed. Finally, the limitations and potential trends of MOFs-based materials in food contaminant detection are also highlighted.
Collapse
Affiliation(s)
- Zhepeng Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
S H, K S, Suntharavadivelan, M V, Prabhavathy P. FinSecure: Utilizing IoT Sensors for Formaldehyde Detection and Fish Freshness Detection for Enhancing Safety in Fish Consumption Using Machine Learning and Deep Learning. 2024 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTATION, ELECTRONICS, POWER AND TELECOMMUNICATION (ICONSCEPT) 2024:1-8. [DOI: 10.1109/iconscept61884.2024.10627800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Harish S
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - Somesh K
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - Suntharavadivelan
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - Venkatesan M
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - P. Prabhavathy
- Vellore Institute of Technology,Department of Computer Science and Engineering and Information Systems,Vellore,India
| |
Collapse
|
5
|
Chen J, Zhang J, Wang N, Xiao B, Sun X, Li J, Zhong K, Yang L, Pang X, Huang F, Chen A. Critical review and recent advances of emerging real-time and non-destructive strategies for meat spoilage monitoring. Food Chem 2024; 445:138755. [PMID: 38387318 DOI: 10.1016/j.foodchem.2024.138755] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Monitoring and evaluating food quality, especially meat quality, has received a growing interest to ensure human health and decrease waste of raw materials. Standard analytical approaches used for meat spoilage assessment suffer from time consumption, being labor-intensive, operation complexity, and destructiveness. To overcome shortfalls of these traditional methods and monitor spoilage microorganisms or related metabolites of meat products across the supply chain, emerging analysis devices/systems with higher sensitivity, better portability, on-line/in-line, non-destructive and cost-effective property are urgently needed. Herein, we first overview the basic concepts, causes, and critical monitoring indicators associated with meat spoilage. Then, the conventional detection methods for meat spoilage are outlined objectively in their strengths and weaknesses. In addition, we place the focus on the recent research advances of emerging non-destructive devices and systems for assessing meat spoilage. These novel strategies demonstrate their powerful potential in the real-time evaluation of meat spoilage.
Collapse
Affiliation(s)
- Jiaci Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jiapeng Li
- China Meat Research Center, Beijing, China.
| | - Ke Zhong
- Shandong Academy of Grape, Jinan, China.
| | - Longrui Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiangyi Pang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Elbarbary NK, Morshdy AEM, Ghania AA, Ali MA, Abdelhaseib M, Malak NM, Gomaa RA. Chemical properties indices for nutritional quality evaluation of Nasser Lake fish, Aswan, Egypt. Open Vet J 2024; 14:1403-1416. [PMID: 39055768 PMCID: PMC11268908 DOI: 10.5455/ovj.2024.v14.i6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/05/2024] [Indexed: 07/27/2024] Open
Abstract
Background Fish is considered an important food because it includes main nutrients (proteins, fats, and ash) and micronutrients (vitamins and minerals). The assessment of fish nutritional content data may offer crucial recommendations regarding freshwater fish consumption and preserving human well-being. Aim Evaluate the safety and quality properties of Nasser Lake fish, Aswan, Egypt. Methods A total of 250 samples, 50 of each Nile tilapia, Nile perch, Zander, Catfish, and Elephant-snout, from Nasser Lake, Aswan, Egypt; beheaded, eviscerated, filleted, and minced for determination of proximate analysis, amino acid, fatty acids (FAs), minerals and heavy metal, histamine content, cholesterol content, and sensory assessment. Results The proximate analysis showed that all the samples examined were of good protein sources, with mean values ranging from 15.92% to 22.89%. Nile perch exhibits the highest levels of total FAs and amino acids. Heavy metal concentrations varied considerably among the analyzed samples, with a significant variance in the detection of metals among the examined fish. The findings show low histamine and cholesterol levels in the examined species, and were in accordance with those set by the National Food Safety Authority (NFSA) and the European Union Commission (EC). Accordingly, all samples are accepted based on their sensory properties. Conclusion Nasser Lake fish are of high nutritional value and have an excellent supply of amino and FAs.
Collapse
Affiliation(s)
- Nady Khairy Elbarbary
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Alaa Eldin M.A. Morshdy
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ali A. Ghania
- Department of Food Science and Technology, Faculty of Agriculture, University of Tripoli, Tripoli, Libya
| | - Marwa A. Ali
- Microbiology and Immunology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Maha Abdelhaseib
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nermeen M.L. Malak
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Giza, Egypt
| | - Reda A. Gomaa
- Food Science and Technology Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt
| |
Collapse
|
7
|
Han Q, Yang M, Zhang Z, Bai X, Liu X, Qin Z, Zhang W, Wang P, Zhu L, Shu Z, Li X. Amine vapor-responsive ratiometric sensing tag based on HPTS/TPB-PVA fluorescent film for visual determination of fish freshness. Food Chem X 2024; 21:101152. [PMID: 38333888 PMCID: PMC10850885 DOI: 10.1016/j.fochx.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
In this study, amine vapor-sensitive films with ratiometric fluorescence attributes were developed. The pH-sensitive fluorescein 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and its tetraphenylethylene derivative (TPB) were selected as ratiometric indicators and incorporated into a polyvinyl alcohol (PVA) matrix to produce HPTS/TPB-PVA films. The films responded well to amine vapors, and the interference of aromatic vapors did not substantially affect the fluorescence signals of the films. Under UV light at a wavelength of 365 nm, the fluorescence of the films changed from dark pink to light pink and finally to yellow when the freshness of the fish was visually checked during storage. In addition, the color difference values of the films showed a positive correlation with the total volatile basic nitrogen (TVB-N), ranging from 12.7 to 24.8 mg/100 g at 25 °C and 8.4 to 25.6 mg/100 g at 4 °C, respectively. This indicates that fluorescent films have good potential for quantifying fish freshness in the near future when connected to an automatic data processing system based on color differences.
Collapse
Affiliation(s)
- Qian Han
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education Wuhan, Hubei 430028, China
| | - Min Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Zexin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xinwen Bai
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education Wuhan, Hubei 430028, China
| | - Zhenhua Qin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
| | - Wei Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education Wuhan, Hubei 430028, China
| | - Pingping Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education Wuhan, Hubei 430028, China
| | - Lijie Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education Wuhan, Hubei 430028, China
| | - Zaixi Shu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education Wuhan, Hubei 430028, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| |
Collapse
|
8
|
Zhang Z, Tang H, Cai K, Liang R, Tong L, Ou C. A Novel Indicator Based on Polyacrylamide Hydrogel and Bromocresol Green for Monitoring the Total Volatile Basic Nitrogen of Fish. Foods 2023; 12:3964. [PMID: 37959082 PMCID: PMC10650302 DOI: 10.3390/foods12213964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
An intelligent indicator was developed by immobilizing bromocresol green (BCG) within the polyacrylamide (PAAm) hydrogel matrix to monitor the total volatile basic nitrogen (TVB-N) content of fish. The FTIR analysis indicated that BCG was effectively incorporated into the PAAm through the formation of intermolecular hydrogen bonds. A thermogravimetric analysis (TGA) showed that the PAAm/BCG indicator had a mere 0.0074% acrylamide monomer residue, meanwhile, the addition of BCG improved the thermal stability of the indicator. In vapor tests with various concentrations of trimethylamine, the indicator performed similarly at both 4 °C and 25 °C. The total color difference values (ΔE) exhibited a significant linear response to TVB-N levels ranging from 4.29 to 30.80 mg/100 g at 4 °C (R2 = 0.98). Therefore, the PAAm/BCG indicator demonstrated stable and sensitive color changes based on pH variations and could be employed in smart packaging for real-time assessment of fish freshness.
Collapse
Affiliation(s)
- Zhepeng Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo 315100, China;
| | - Keyan Cai
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Ruiping Liang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Li Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| |
Collapse
|
9
|
Nanou E, Kotsiri M, Kogiannou D, Katsouli M, Grigorakis K. Consumer Perception of Freshness and Volatile Composition of Fresh Gilthead Seabream and Seabass in Active Packaging with and without CO 2-Emitting Pads. Foods 2023; 12:foods12030505. [PMID: 36766034 PMCID: PMC9914307 DOI: 10.3390/foods12030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Active packaging with CO2-emitters (pads) has recently been used for shelf-life extension of fresh fish. The aim of this study was to identify consumer attitudes towards fresh fish packaging, to examine whether Greek consumers prefer active packaging with pad over active packaging without pad, to investigate any perceived differences in the sensory freshness of the fish, and to relate consumer perception to volatile composition of fish fillets. In total, 274 consumers participated in the study which included freshness sensory evaluation of gilthead seabream (Sparus aurata) and seabass (Dicentrarchuslabrax), whole-gutted and filleted, raw and cooked, at high quality and at the end of high-quality shelf-life. Samples were packed under modified atmosphere either with a pad or without. Results showed that consumers preferred packages with pads, especially at the end of high quality shelf-life. They perceived raw samples packed with a pad to be fresher and closer to the ideal product, and also had a higher purchase intention towards them. Cooked samples were not perceived differently. Consumers' perception was in accordance with the GC-MS findings in the volatile compounds that function as freshness or spoilage indicators. Most participants were positive towards fresh fish packaging although they usually buy unpacked fresh fish. Our results suggest that active packaging with CO2 emitters contribute to freshness preservation and that it has a positive potential in the Greek market.
Collapse
Affiliation(s)
- Evangelia Nanou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
| | - Mado Kotsiri
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
| | - Dimitra Kogiannou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
| | - Maria Katsouli
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National TechnicalUniversity of Athens (NTUA), 15780 Athens, Greece
| | - Kriton Grigorakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave., 19013 Attiki, Greece
- Correspondence:
| |
Collapse
|