1
|
Cardona-Herrera R, Quiñones-Muñoz TA, Franco-Robles E, Ozuna C. Development of a tamarind-based functional beverage with partially-hydrolyzed agave syrup and the health effects of its consumption in C57BL/6 mice. Food Chem 2024; 447:138935. [PMID: 38461724 DOI: 10.1016/j.foodchem.2024.138935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Excess consumption of sweetened beverages is associated with a global rise in metabolic diseases. Tamarind and partially-hydrolyzed agave syrup have potential for developing healthier beverages. Our objective was to develop a functional beverage using these ingredients (PH-AS-B). We also evaluate shelf-life stability (physicochemical, microbiological, and antioxidant properties) and health effects in C57BL/6 mice compared with tamarind beverages sweetened with glucose or fructose. Optimal tamarind extraction conditions were a 1:10 ratio (g pulp/mL water) and boiling for 30 min, and the resulting beverage had a shelf life of two months at 4 °C. Non-volatile metabolites were identified using HPLC/MS. PH-AS-B was associated with decreased blood cholesterol (5%) and triglyceride (20-35%) concentrations in healthy mice as well as lower lipid (82%) concentrations and evidence of protein oxidation (42%) in the liver, compared with glucose- and fructose-sweetened tamarind beverages. In conclusion, PH-AS-B was stable and associated with beneficial metabolic properties in healthy mice.
Collapse
Affiliation(s)
- Román Cardona-Herrera
- Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico
| | - Tannia Alexandra Quiñones-Muñoz
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajío, Zapopan, Jalisco 45019, Mexico
| | - Elena Franco-Robles
- Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico; Departamento de Veterinaria y Zootecnia, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico
| | - César Ozuna
- Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico; Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato 36500, Mexico.
| |
Collapse
|
2
|
Brahmi F, Mateos-Aparicio I, Mouhoubi K, Guemouni S, Sahki T, Dahmoune F, Belmehdi F, Bessai C, Madani K, Boulekbache-Makhlouf L. Kinetic Modeling of Convective and Microwave Drying of Potato Peels and Their Effects on Antioxidant Content and Capacity. Antioxidants (Basel) 2023; 12:antiox12030638. [PMID: 36978886 PMCID: PMC10045004 DOI: 10.3390/antiox12030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
This study deals with drying properties and focuses on the drying kinetics of potato peels (PP) by two processes, namely convection drying (CD) at various temperatures (40, 60, 80, 100, and 120 °C) and microwave drying (MD) at different powers (200, 400, 600, and 800 W). In addition, the effectiveness of the adopted processes was evaluated in terms of antioxidant contents and antioxidant capacity. A total of 22 mathematical models were undertaken to predict the drying kinetics, and the best model was selected based on the highest R2 values and the lowest χ2 and RMSE values. The Sledz model was the more appropriate for both methods with values of 0.9995 ≤ R2 ≤ 0.9999, χ2 = 0.0000, and 0.0054 ≤ RMSE ≤ 0.0030 for CD, and the results of MD were 0.9829 ≤ R2 ≤ 0.9997, 0.0000 ≤ χ2 ≤ 0.0010, and 0.0304 ≤ RMSE ≤ 0.0053. The best drying rates (DR) of PP were assigned to a temperature of 120 °C and a power of 600 W with values of 0.05 and 0.20 kg water/kg dw min, respectively. A potential explanation is that as PP’s moisture content decreased during the drying process, there was a drop in absorption, which led to a reduction in the DR. The energy consumption of both processes was assessed, and it rose with increasing temperature or power. The microwave process reduced the drying time, consumed lower energy, and presented a higher drying efficiency at a moderate power level compared to the convection process. Furthermore, MD preserved antioxidants better compared to CD and improved the antioxidant capacity. Therefore, the proposed microwave process for drying PP is suggested for its expected use in various fields, including the food processing industries.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Correspondence: (F.B.); (I.M.-A.); Tel.: +213-776-52-54-87 (F.B.); +34-91394-1807 (I.M.-A.)
| | - Inmaculada Mateos-Aparicio
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (F.B.); (I.M.-A.); Tel.: +213-776-52-54-87 (F.B.); +34-91394-1807 (I.M.-A.)
| | - Khokha Mouhoubi
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Agri-Food Technologies Research Center, Targua Ouzemmour Rouad, Bejaia 06000, Algeria
| | - Sara Guemouni
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Tassadit Sahki
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Farid Dahmoune
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life and Earth Sciences Sciences, University of Bouira, Bouira 10000, Algeria
| | - Ferroudja Belmehdi
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Chafiaa Bessai
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Khodir Madani
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
- Department of Nutrition and Food Science, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lila Boulekbache-Makhlouf
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
3
|
Choo YX, Teh LK, Tan CX. Effects of Sonication and Thermal Pasteurization on the Nutritional, Antioxidant, and Microbial Properties of Noni Juice. Molecules 2022; 28:molecules28010313. [PMID: 36615507 PMCID: PMC9822281 DOI: 10.3390/molecules28010313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Sonication is recognized as a potential food processing method to improve the functional properties of fruit juice. This study evaluated the effects of different sonication durations (20, 40, and 60 min) and thermal pasteurization on the nutritional, antioxidant, and microbial properties of noni juice. Fresh noni juice served as the control. The main organic acids detected were malic (57.54−89.31 mg/100 mL) and ascorbic (17.15−31.55 mg/100 mL) acids. Compared with the fresh sample, the concentrations of these compounds were significantly improved (p < 0.05) in the 60 min sonicated sample but reduced (p < 0.05) in the pasteurized sample. Moreover, sonication for 60 min resulted in increments of scopoletin, rutin, and vanillic acid compared to the fresh sample. The antioxidant activity of the juice sample was improved in the sample sonicated for 60 min. Irrespective of juice processing method, the level of microbial counts in noni juice was within the satisfactory level over the 8 weeks of refrigerated (4 °C) storage. This study highlights the feasibility of using ultrasound processing to enhance the quality of noni juice on the industrial scale.
Collapse
|