1
|
Ma Y, Liu L, Hu G, Wang S, Shan L, Chen J. Effect of Non- Saccharomyces Yeasts Derived from Traditional Fermented Foods on Beer Fermentation Characteristics and Flavor Profiles. Foods 2025; 14:1395. [PMID: 40282796 PMCID: PMC12027376 DOI: 10.3390/foods14081395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
In recent years, numerous studies have demonstrated that non-Saccharomyces yeasts hold potential for industrial application and aroma generation during fermentation. Non-Saccharomyces wild yeasts can be important tools in the development of new products, and the objective of this work was to obtain and characterize novel yeast isolates for their ability to produce beer. Traditional fermented beverages serve as a vital source of yeast strains that can exhibit unique characteristics during the brewing process. Thus, 22 strains of Saccharomycopsis fibuligera were isolated from traditional fermented foods in this work. Subsequently, through primary and secondary screening, S. fibuligera G02 was identified as a promising candidate for beer brewing, attributed to its advantageous physiological traits and notable potential for beer production. Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was employed to analyze the volatile flavor substances in beer fermented using the S. fibuligera G02 strain. Chemometric analysis revealed that S. fibuligera G02 had a unique influence on beer aroma. Accordingly, isoamyl alcohol, phenyl-1-ethanol, ethyl acetate, isoamyl acetate, and 4-ethyl guaiacol (4EG) were the key aroma components of S. fibuligera G02. This work provides useful insights into the non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.
Collapse
Affiliation(s)
- Yanlin Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
| | - Liangyu Liu
- Kweichow Moutai Co., Ltd., Zunyi 564501, China;
| | - Guanhui Hu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
| | - Shuyi Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
| | - Lei Shan
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Jingyu Chen
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.M.); (G.H.); (S.W.)
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
| |
Collapse
|
2
|
Klimczak K, Cioch-Skoneczny M, Ciosek A, Poreda A. Application of Non- Saccharomyces Yeast for the Production of Low-Alcohol Beer. Foods 2024; 13:3214. [PMID: 39456276 PMCID: PMC11507149 DOI: 10.3390/foods13203214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, demand for low-alcohol and alcohol-free beers has been rising. Of the many methods of producing such beers, many have expensive implementation requirements or drawbacks in terms of beer quality. The exploration of non-Saccharomyces yeast species presents a promising opportunity to overcome these challenges. These yeasts, with their diverse metabolic capabilities and unique flavor profiles, offer the potential to create innovative and flavorful low-alcohol beers. The study investigates the feasibility of using selected non-Saccharomyces yeasts for brewing low-alcohol beers, focusing on fermentation kinetics, physicochemical parameters, and the sensory attributes of the final product. The evaluated yeast species were Kluyveromyces lactis MG971263, Metschnikowia pulcherrima MG971247 and MG971250, Torulaspora delbrueckii MG971248, Wickerhamomyces anomalus MG971261, and W. onychis MG971246. Two strains of Saccharomyces cerevisiae were used as a control. The results of the study show that selected non-Saccharomyces yeast species might be used to produce low-alcohol beers. The non-Saccharomyces yeast allowed the researchers to obtain beers with an alcohol content in the range of 0.5-1.05%, while the control beer brewed with US-05 had an alcohol content of 3.77%. Among the evaluated strains, the strains M. pulcherrima MG971250 and T. delbrueckii MG971248 were found to be rated better in a sensory evaluation than the brewed and low-alcohol strains of S. cerevisiae.
Collapse
Affiliation(s)
| | - Monika Cioch-Skoneczny
- Department of Fermentation Technology and Microbiology, University of Agriculture in Kraków, ul. Balicka 122, 30-149 Kraków, Poland; (K.K.); (A.C.); (A.P.)
| | | | | |
Collapse
|
3
|
Qi M, Jiang L, Song J, Li L, Xu M, Li Y, Ma C, Chen S, Li H. Enhancing cassava beer quality: Extrusion-induced modification of cassava starch structure boosts fermentable sugar content in wort. Int J Biol Macromol 2024; 278:134895. [PMID: 39168202 DOI: 10.1016/j.ijbiomac.2024.134895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
The high starch content and cost-effectiveness of cassava make it an attractive adjunct in beer brewing, with the fine structure of starch playing a crucial role in determining the composition of fermentable sugars (FS) and overall beer quality. This study investigated the effect of extrusion-induced changes in the starch structure of cassava flour on the FS profile of the wort and, consequently, on the quality attributes of cassava beer. The findings revealed that the shear stress during extrusion significantly reduced the molecular weight to 1.20 × 105g/mol and the branching degree of amylopectin. Simultaneously, there was an increase in the concentrations of short- and intermediate- chain amylose by 5.61% and 42.72%, respectively. These structural changes enhanced the enzymatic hydrolysis of extruded cassava flour (ECF), resulting in a higher total fermentable sugars content (22.00g/100 mL) in the ECF wort, predominantly composed of maltose and glucose. Furthermore, the altered FS profile led to an increased production of higher alcohols and esters in extruded cassava beer (ECB), particularly noted for the elevation of 2-phenylethyl alcohol levels, which imparted a distinctive rose aroma to the ECB. Consequently, the sensory profile of ECB showed significant improvement. This study offers critical insight into optimizing cassava beer quality and broadens the potential applications of cassava flour in the brewing industry.
Collapse
Affiliation(s)
- Mingming Qi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Lijun Jiang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Jialin Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Luxia Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mei Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yueming Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Chengye Ma
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Shanfeng Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Hongjun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
4
|
Aguiar-Cervera J, Visinoni F, Zhang P, Hollywood K, Vrhovsek U, Severn O, Delneri D. Effect of Hanseniaspora vineae and Saccharomyces cerevisiae co-fermentations on aroma compound production in beer. Food Microbiol 2024; 123:104585. [PMID: 39038891 DOI: 10.1016/j.fm.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024]
Abstract
In recent years, the boom of the craft beer industry refocused the biotech interest from ethanol production to diversification of beer aroma profiles. This study analyses the fermentative phenotype of a collection of non-conventional yeasts and examines their role in creating new flavours, particularly through co-fermentation with industrial Saccharomyces cerevisiae. High-throughput solid and liquid media fitness screening compared the ability of eight Saccharomyces and four non-Saccharomyces yeast strains to grow in wort. We determined the volatile profile of these yeast strains and found that Hanseniaspora vineae displayed a particularly high production of the desirable aroma compounds ethyl acetate and 2-phenethyl acetate. Given that H. vineae on its own can't ferment maltose and maltotriose, we carried out mixed wort co-fermentations with a S. cerevisiae brewing strain at different ratios. The two yeast strains were able to co-exist throughout the experiment, regardless of their initial inoculum, and the increase in the production of the esters observed in the H. vineae monoculture was maintained, alongside with a high ethanol production. Moreover, different inoculum ratios yielded different aroma profiles: the 50/50 S. cerevisiae/H. vineae ratio produced a more balanced profile, while the 10/90 ratio generated stronger floral aromas. Our findings show the potential of using different yeasts and different inoculum combinations to tailor the final aroma, thus offering new possibilities for a broader range of beer flavours and styles.
Collapse
Affiliation(s)
- Jose Aguiar-Cervera
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom; Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Federico Visinoni
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Penghan Zhang
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Katherine Hollywood
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Urska Vrhovsek
- Foundation Edmund Mach, San Michele all' Adige, Trento, Italy
| | - Oliver Severn
- Singer Instruments Co. Ltd, Somerset, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
5
|
Cao K, Wu J, Wan X, Hou Y, Zhang C, Wang Y, Zhang L, Yang W, He Y, Wu R. Impact of non-Saccharomyces yeasts derived from traditional fermented foods on beer aroma: Analysis based on HS-SPME-GC/MS combined with chemometrics. Food Res Int 2024; 187:114366. [PMID: 38763646 DOI: 10.1016/j.foodres.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.
Collapse
Affiliation(s)
- Kaixin Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xiujuan Wan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yuchen Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yusheng Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Liang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenxin Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China.
| |
Collapse
|
6
|
Fu Y, Gao Y, Yang M, Chen J, Zhu C, Tang J, Chen L, Cai Z. Effects of Non-Saccharomyces Yeasts and Their Pairwise Combinations in Co-Fermentation with Saccharomyces cerevisiae on the Quality of Chunjian Citrus Wine. Molecules 2024; 29:1028. [PMID: 38474538 DOI: 10.3390/molecules29051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Non-Saccharomyces (NSc) yeasts have great potential in improving wine qualities. In this study, two NSc and two Saccharomyces cerevisiae (Sc) samples were tested on their performance of mono-inoculated and composite culture in the fermentation of Chunjian citrus wine. The cell count, Brix degree, total sugar, total acidity, alcohol level, pH value, color intensity (CI), and tonality were determined to evaluate the contribution of NSc to the quality of citrus wine in the mixed fermentation. Volatile compounds were analyzed by HS-SPME-GC-MS, and sensory evaluation was carried out. During the 9-day fermentation, the mixed-culture wine exhibited a higher cell concentration than the pure culture. After the fermentation, mixed-culture wine specifically decreased the concentrations of unfavorable volatile compounds, such as isobutanol and octanoic acid, and increased favorable volatile compounds, including ethyl octanoate, ethyl decanoate, and phenylethyl acetate. The quality category of the citrus wine was improved compared with the Sc mono-inoculated wines, mainly in regard to aroma, retention, and sweetness. The study shows that the mixed fermentation of NSc and Sc has positive impacts on reducing alcohol level and total acidity and increasing CI. The present work demonstrates that the mixed fermentation of NSc and Sc has enormous beneficial impacts on improving the quality of citrus wine.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Yueyue Gao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Ming Yang
- Sichuan Sports College Rehabilitation Research Center, Chengdu 610093, China
| | - Juan Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Lianhong Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Zijian Cai
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
7
|
Postigo V, García M, Arroyo T. Study of a First Approach to the Controlled Fermentation for Lambic Beer Production. Microorganisms 2023; 11:1681. [PMID: 37512854 PMCID: PMC10384975 DOI: 10.3390/microorganisms11071681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Non-Saccharomyces yeasts represent a great source of biodiversity for the production of new beer styles, since they can be used in different industrial areas, as pure culture starters, in co-fermentation with Saccharomyces, and in spontaneous fermentation (lambic and gueuze production, with the main contribution of Brettanomyces yeast). The fermentation process of lambic beer is characterized by different phases with a characteristic predominance of different microorganisms in each of them. As it is a spontaneous process, fermentation usually lasts from 10 months to 3 years. In this work, an attempt was made to perform a fermentation similar to the one that occurred in this process with lactic bacteria, Saccharomyces yeast and Brettanomyces yeast, but controlling their inoculation and therefore decreasing the time necessary for their action. For this purpose, after the first screening in 100 mL where eight Brettanomyces yeast strains from D.O. "Ribeira Sacra" (Galicia) were tested, one Brettanomyces bruxellensis strain was finally selected (B6) for fermentation in 1 L together with commercial strains of Saccharomyces cerevisiae S-04 yeast and Lactobacillus brevis lactic acid bacteria in different sequences. The combinations that showed the best fermentative capacity were tested in 14 L. Volatile compounds, lactic acid, acetic acid, colour, bitterness, residual sugars, ethanol, melatonin and antioxidant capacity were analysed at different maturation times of 1, 2, 6 and 12 months. Beers inoculated with Brettanomyces yeast independently of the other microorganisms showed pronounced aromas characteristic of the Brettanomyces yeast. Maturation after 12 months showed balanced beers with "Brett" aromas, as well as an increase in the antioxidant capacity of the beers.
Collapse
Affiliation(s)
- Vanesa Postigo
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, Km 38.2, 28805 Alcalá de Henares, Spain
- Brewery La Cibeles, Petróleo 34, 28918 Leganés, Spain
| | - Margarita García
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, Km 38.2, 28805 Alcalá de Henares, Spain
| | - Teresa Arroyo
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, Km 38.2, 28805 Alcalá de Henares, Spain
| |
Collapse
|
8
|
Maicas S, Mateo JJ. The Life of Saccharomyces and Non- Saccharomyces Yeasts in Drinking Wine. Microorganisms 2023; 11:1178. [PMID: 37317152 PMCID: PMC10224428 DOI: 10.3390/microorganisms11051178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Drinking wine is a processed beverage that offers high nutritional and health benefits. It is produced from grape must, which undergoes fermentation by yeasts (and sometimes lactic acid bacteria) to create a product that is highly appreciated by consumers worldwide. However, if only one type of yeast, specifically Saccharomyces cerevisiae, was used in the fermentation process, the resulting wine would lack aroma and flavor and may be rejected by consumers. To produce wine with a desirable taste and aroma, non-Saccharomyces yeasts are necessary. These yeasts contribute volatile aromatic compounds that significantly impact the wine's final taste. They promote the release of primary aromatic compounds through a sequential hydrolysis mechanism involving several glycosidases unique to these yeasts. This review will discuss the unique characteristics of these yeasts (Schizosaccharomyces pombe, Pichia kluyveri, Torulaspora delbrueckii, Wickerhamomyces anomalus, Metschnikowia pulcherrima, Hanseniaspora vineae, Lachancea thermotolerans, Candida stellata, and others) and their impact on wine fermentations and co-fermentations. Their existence and the metabolites they produce enhance the complexity of wine flavor, resulting in a more enjoyable drinking experience.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|