1
|
Qu K, Wang J, Cheng Y, Bai B, Xia X, Geng H. Identification of quantitative trait loci and candidate genes for grain superoxide dismutase activity in wheat. BMC PLANT BIOLOGY 2024; 24:716. [PMID: 39060949 PMCID: PMC11282854 DOI: 10.1186/s12870-024-05367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Superoxide dismutase (SOD) can greatly scavenge reactive oxygen species (ROS) in plants. SOD activity is highly related to plant stress tolerance that can be improved by overexpression of SOD genes. Identification of SOD activity-related loci and potential candidate genes is essential for improvement of grain quality in wheat breeding. However, the loci and candidate genes for relating SOD in wheat grains are largely unknown. In the present study, grain SOD activities of 309 recombinant inbred lines (RILs) derived from the 'Berkut' × 'Worrakatta' cross were assayed by photoreduction method with nitro-blue tetrazolium (NBT) in four environments. Quantitative trait loci (QTL) of SOD activity were identified using inclusive composite interval mapping (ICIM) with the genotypic data of 50 K single nucleotide polymorphism (SNP) array. RESULTS Six QTL for SOD activity were mapped on chromosomes 1BL, 4DS, 5AL (2), and 5DL (2), respectively, explaining 2.2 ~ 7.4% of the phenotypic variances. Moreover, QSOD.xjau-1BL, QSOD.xjau-4DS, QSOD.xjau-5 A.1, QSOD.xjau-5 A.2, and QSOD.xjau-5DL.2 identified are likely to be new loci for SOD activity. Four candidate genes TraesCS4D01G059500, TraesCS5A01G371600, TraesCS5D01G299900, TraesCS5D01G343100LC, were identified for QSOD.xjau-4DS, QSOD.xjau-5AL.1, and QSOD.xjau-5DL.1 (2), respectively, including three SOD genes and a gene associated with SOD activity. Based on genetic effect analysis, this can be used to identify desirable alleles and excellent allele variations in wheat cultivars. CONCLUSION These candidate genes are annotated for promoting SOD production and inhibiting the accumulation of ROS during plant growth. Therefore, lines with high SOD activity identified in this study may be preferred for future wheat breeding.
Collapse
Affiliation(s)
- Kejia Qu
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jiqing Wang
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yukun Cheng
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Hongwei Geng
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
2
|
De Bellis P, Rizzello CG. Advances in the Use of Beneficial Microorganisms to Improve Nutritional and Functional Properties of Fermented Foods. Foods 2024; 13:155. [PMID: 38201180 PMCID: PMC10778682 DOI: 10.3390/foods13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The World Health Organization [...].
Collapse
Affiliation(s)
- Palmira De Bellis
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
3
|
Guan Y, Yang X, Pan C, Kong J, Wu R, Liu X, Wang Y, Chen M, Li M, Wang Q, He G, Yang G, Chang J, Li Y, Wang Y. Comprehensive Analyses of Breads Supplemented with Tannic Acids. Foods 2023; 12:3756. [PMID: 37893648 PMCID: PMC10606112 DOI: 10.3390/foods12203756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tannic acid (TA) has been recently considered as a new dough additive for improving the bread-making quality of wheat. However, the effects of TA supplementation on the sensory quality parameters (color, crumb grain structure, and sensory properties) of bread have not been studied. Further, the potential of TA supplementation in bread-making quality improvement has not been evaluated by using commercial flour. In the present study, three commercial wheat flours (namely, XL, QZG, and QZZ) with different gluten qualities were used to evaluate the effects of TA supplementation (in concentrations of 0.1% and 0.3%, respectively). TA supplementation did not change the proximate composition of the breads but increased the volumes and specific volumes of XL and QZG breads. TA supplementation enhanced antioxidant activities, with 0.3% TA significantly increasing the antioxidant capacities of bread made from all three flour samples by approximately four-fold (FRAP method)/three-fold (ABTS method). Positive effects of TA on the reduction in crumb hardness, gumminess, and chewiness were observed in the XL bread, as determined by the texture profile analysis. For the analyses on visual and sensory attributes, our results suggest that TA did not affect the crust color, but only slightly reduced the L* (lightness) and b* (yellowness) values of the crumb and increased the a* (redness) value. TA supplementation also increased the porosity, total cell area, and mean cell area. Satisfactorily, the sensory evaluation results demonstrate that TA-supplemented breads did not exhibit negative sensory attributes when compared to the non-TA-added breads; rather, the attributes were even increased. In summary, TA-supplemented breads generally had not only better baking quality attributes and enhanced antioxidant activities, but, more importantly, presented high consumer acceptance in multiple commercial flour samples. Our results support the commercial potential of TA to be used as a dough improver.
Collapse
Affiliation(s)
- Yanbin Guan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Xun Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Chuang Pan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Jie Kong
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Ruizhe Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Xueli Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Miao Li
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450052, China;
| | - Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.G.); (X.Y.); (C.P.); (J.K.); (R.W.); (Y.W.); (M.C.); (G.H.); (G.Y.)
| |
Collapse
|
4
|
Cichońska P, Kowalska E, Ziarno M. The Survival of Psychobiotics in Fermented Food and the Gastrointestinal Tract: A Review. Microorganisms 2023; 11:microorganisms11040996. [PMID: 37110420 PMCID: PMC10142889 DOI: 10.3390/microorganisms11040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, scientists have been particularly interested in the gut-brain axis, as well as the impact of probiotics on the nervous system. This has led to the creation of the concept of psychobiotics. The present review describes the mechanisms of action of psychobiotics, their use in food products, and their viability and survival during gastrointestinal passage. Fermented foods have a high potential of delivering probiotic strains, including psychobiotic ones. However, it is important that the micro-organisms remain viable in concentrations ranging from about 106 to 109 CFU/mL during processing, storage, and digestion. Reports indicate that a wide variety of dairy and plant-based products can be effective carriers for psychobiotics. Nonetheless, bacterial viability is closely related to the type of food matrix and the micro-organism strain. Studies conducted in laboratory conditions have shown promising results in terms of the therapeutic properties and viability of probiotics. Because human research in this field is still limited, it is necessary to broaden our understanding of the survival of probiotic strains in the human digestive tract, their resistance to gastric and pancreatic enzymes, and their ability to colonize the microbiota.
Collapse
Affiliation(s)
- Patrycja Cichońska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Ewa Kowalska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| |
Collapse
|
5
|
Exploring the Core Microbiota of Four Different Traditional Fermented Beverages from the Colombian Andes. FERMENTATION 2022. [DOI: 10.3390/fermentation8120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an ancient process used to prepare and preserve food. Currently, fermented beverages are part of the culture of people living in the Colombian Andean Region, and they are a vital part of their cosmology and ancestral vision. Chicha, Forcha, Champús, and Masato are some of the most common Colombian Andes region’s traditional fermented beverages. These drinks come from the fermentation of maize (Zea maize), but other cereals such as wheat or rye, could be used. The fermentation is carried out by a set of bacteria and yeasts that provide characteristic organoleptic properties of each beverage. In this work, the information collected from the metagenomics analyses by sequencing ITS 1-4 (Internal Transcriber Spacer) and the 16S ribosomal gene for fungi and the V3-V4 region of the rDNA for bacteria allowed us to identify the diversity present in these autochthonous fermented beverages made with maize. The sequencing analysis showed the presence of 39 bacterial and 20 fungal genera. In addition, we determined that only nine genera of bacteria and two genera of fungi affect the organoleptic properties of smell, colour, and flavour, given the production of compounds such as lactic acid, alcohol, and phenols, highlighting the critical role of these microorganisms. Our findings provide new insights into the core microbiota of these beverages, represented by Lactobacillus fermentum, Acetobacter pasteurianus, and Saccharomyces cerevisiae.
Collapse
|
6
|
Xu J, Hussain M, Su W, Yao Q, Yang G, Zhong Y, Zhou L, Huang X, Wang Z, Gu Q, Ren Y, Li H. Effects of novel cellulase (Cel 906) and probiotic yeast fermentation on antioxidant and anti-inflammatory activities of vine tea ( Ampelopsis grossedentata). Front Bioeng Biotechnol 2022; 10:1006316. [PMID: 36185429 PMCID: PMC9521311 DOI: 10.3389/fbioe.2022.1006316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022] Open
Abstract
Vine tea (Ampelopsis grossedentata) is a plant resource with good nutritional and medicinal, and is widely consumed in China. This study aimed to develop a functional vine tea fermentation broth using microbial fermentation and cellulase degradation. First, the most suitable probiotics for vine tea fermentation were screened, and the fermentation conditions were optimized. Then, a new cellulase (Cel 906, MW076177) was added to evaluate the changes in the contents of effective substances and to study its efficacy. The results show that saccharomyces cerevisiae Y-401 was identified as the best strain, the optimal fermentation conditions were a time of 94.60 h, feeding concentration of 115.21 g/L, and temperature of about 34.97°C. The vine tea fermentation broth has a strong inhibitory ability on 2,2'-azinobis3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (99.73%), peroxyl (53.15%), superoxide anion radicals (84.13%), and 1,1-Diphenyl-2-trinitrophenylhydrazine (DPPH) (92.48%). It has a decent inhibitory impact on the cell viability, tyrosinase activity (32.25%), and melanin synthesis (63.52%) of B16-F10 melanoma cells induced by α-MSH. Inflammatory cell recruitment was reduced in a zebrafish inflammation model. Therefore, this vine tea fermented broth has strong antioxidant, anti-melanoma, and anti-inflammatory effects, and has healthcare potential as a probiotic tea.
Collapse
Affiliation(s)
- Jin Xu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Mubasher Hussain
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Wenfeng Su
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Qian Yao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Guandong Yang
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yu Zhong
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Lin Zhou
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Xiaoting Huang
- Guangzhou Ruby Biotechnology Co., Ltd., Guangzhou, China
| | - Zhixiang Wang
- Guangdong Molecular Probe and Biomedical Imaging Engineering Technology Research Center, Guangzhou, China
| | - Quliang Gu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| | - Yifei Ren
- Guangzhou Hua Shuo Biotechnology Co., Ltd., Guangzhou, China
| | - He Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, China
| |
Collapse
|