1
|
Liu S, Sun L, Ye X, Yang F, Safdar B, Cao J, Pang Z, Liu X, Li H. Improvement of soybean protein isolate/konjac glucomannan-seaweed polysaccharide-based connective tissue simulants: effects of pH and water mobility on gel structure and gelling mechanism. Int J Biol Macromol 2025; 310:143208. [PMID: 40254206 DOI: 10.1016/j.ijbiomac.2025.143208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Hydrogels are considered to have good potential to mimic connective tissue. In this study, the mechanical properties and thermal stability of protein-polysaccharide composite hydrogels were enhanced by moisture and acid-base modulation in an attempt to overcome the application limitations. The results of texture profile analysis (TPA) and compression experiments showed that the appropriate outward migration of moisture significantly improved the gel's mechanical properties. Rheological analysis showed that the gel exhibited optimal mechanical properties under an alkaline environment and, combined with the differential scanning calorimetry (DSC) results, excellent thermal stability was observed in the pH 10.5 sample group. Furthermore, magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) results showed that the alkaline environment was also conducive to the formation of a denser gel network structure, and the outward migration of water led to a more orderly and uniform structure. Fourier transform infrared spectroscopy (FTIR) results showed that hydrogen bonding also played a major role in the formation of the cellular network structure of the gel. These findings demonstrate the positive contribution of moisture and pH modulation to the processing and edible property enhancement of animal connective tissue-mimicking structure and provide a theoretical basis for the regulation of hydrogel properties.
Collapse
Affiliation(s)
- Shuqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Luyao Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinnan Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Fan Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Bushra Safdar
- Zhiwei (Handan) Health Food Technology Co., Ltd, Handan 056000, China
| | - Jinnuo Cao
- Zhiwei (Handan) Health Food Technology Co., Ltd, Handan 056000, China
| | - Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
2
|
Lee DY, Kim JS, Park J, Han D, Choi Y, Park JW, Lee J, Mariano E, Namkung S, Hur SJ. An Investigation of the Status of Commercial Meat Analogs and Their Ingredients: Worldwide and South Korea. Food Sci Anim Resour 2025; 45:31-61. [PMID: 39840252 PMCID: PMC11743835 DOI: 10.5851/kosfa.2024.e106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 01/23/2025] Open
Abstract
Meat analogs are a burgeoning industry, with plant-based meat analogs, insect-based meat analogs, algae-based meat analogs, mycoprotein-based meat analogs, and cell-based meat analogs. However, despite the industry's growth potential, market expansion faces hurdles due to taste and quality disparities compared to traditional meats. The composition and characteristics of meat analogs currently available in the market are analyzed in this study to inform the development of future products in this sector. The results show that plant-based meat analogs are mainly based on soy protein together with wheat gluten and methylcellulose or spices. Insect-based meat analogs tend to contain processed larvae as the protein source. Seaweed or spirulina is often the main ingredient in algae-based meat analogs. Mycoprotein-based meat analogs all use mycoproteins. Cell-based beef, pork, chicken, and seafood products are already under various stages of development around the world, although many are still at the prototype level.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Won Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seok Namkung
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
3
|
Samad A, Kim SH, Kim CJ, Lee EY, Kumari S, Hossain MJ, Alam AMMN, Muazzam A, Hwang YH, Joo ST. From Farms to Labs: The New Trend of Sustainable Meat Alternatives. Food Sci Anim Resour 2025; 45:13-30. [PMID: 39840251 PMCID: PMC11743840 DOI: 10.5851/kosfa.2024.e105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 01/23/2025] Open
Abstract
Meat analogs or meat alternatives mimic conventional meat by using non-meat ingredients. There are several reasons for the rising interest in meat alternatives, e.g., health-consciousness, environmental concerns, and the growing demand for sustainable diets. Factors like low-calorie foods, low-fat, efforts to reduce greenhouse gas emissions, and flexitarian lifestyles are also contributing to this change (conventional to meat analogs). Numerous meat substitutes are presently being launched in alternative meat markets. Plant-based meat, restructured meat, cultured meat, hybrid cultured meat, and insect protein-based meat are prevalent among meat alternatives. The scope of meat alternatives, including plant-based meat, cultured meat, restructured meat, and insect-based protein products, is expanding due to advances in food technology. Innovation in food technology plays a crucial role in sustainable food production. Still, there are some challenges to the market of meat alternatives, including consumer acceptance, the appearance of meat alternatives, and the cost of production. Innovative approaches, such as advanced technologies and awareness of meat alternatives to the meat consumer, are required to deal with these challenges. This review briefly examines the technological advances, regulatory requirements, pros and cons, and market trends of meat alternatives. The finding of this review highlights the importance of meat alternatives as a sustainable resource of food. Moreover, meat alternatives can fulfill the increasing demand for meat and also decrease the environmental impact. Additionally, this review also explores ways to improve the overall market scenario of meat alternatives.
Collapse
Affiliation(s)
- Abdul Samad
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Md Jakir Hossain
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - AMM Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Ayesha Muazzam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Orange CAU Co., Ltd., Jinju 52839, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Orange CAU Co., Ltd., Jinju 52839, Korea
| |
Collapse
|
4
|
Choi HY, Lim EJ, Kim HY. A Review on the Application of Animal-Based Materials Using Three-Dimensional (3D) Printing and Protein Restructuring Technologies. Food Sci Anim Resour 2025; 45:282-302. [PMID: 39840247 PMCID: PMC11743844 DOI: 10.5851/kosfa.2024.e132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Production of alternative proteins is crucial for the development of future protein resources. This study explored the creation of sustainable animal resources by combining extrusion molding and three-dimensional (3D) printing technologies. Extrusion effectively organizes vegetable proteins at high temperatures and pressures to replicate meat-like textures, and high-moisture extrusion successfully mimics the fiber structure of conventional meat. However, many meat analogs products still differ from conventional meat in terms of sensory properties such as texture, juiciness, and flavor, indicating the need for quality improvement. Researchers have leveraged 3D printing technology to incorporate fat analogs and enhance the appearance and texture through muscle fiber simulation. This technology allows for precise arrangement of muscle fibers, formation of adipose tissue, and marbling, thereby improving the overall sensory experience. By combining extrusion and 3D printing, we can enhance the nutritional and organoleptic qualities of meat analogs, ultimately meeting consumer expectations and achieving a balance between plant- and animal-based materials.
Collapse
Affiliation(s)
- Hyung-Youn Choi
- Food Standard Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Korea
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Eun-Jin Lim
- Department of Geography Education, Kongju National University, Gongju 32588, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
5
|
Abotsi EE, Panagodage Y, English M. Plant-based seafood alternatives: Current insights on the nutrition, protein-flavour interactions, and the processing of these foods. Curr Res Food Sci 2024; 9:100860. [PMID: 39381133 PMCID: PMC11460494 DOI: 10.1016/j.crfs.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024] Open
Abstract
Fish are an important food source; however, the sustainability of current seafood supplies is a major concern for key stakeholders. The development of plant-based seafood alternatives may be suitable products to alleviate some of the pressures on aquatic ecosystems and help support environmental sustainability. However, the wide-spread adoption of these products weighs heavily on the ingredients used in the formulations which should not only satisfy nutritional and sustainability targets but must also meet consumer approval and functionality. In this review, we highlight recent advances in our understanding of the nutritional quality and sensory challenges in particular flavour (which includes taste and aroma), that have so far proven difficult to overcome in the development of plant-based seafood alternatives. Protein interactions that contribute to flavour development in plant-based seafood alternatives and the factors that impact these interactions are also discussed. We also review the recent advances in the innovative technologies used to improve the texture of products in this emerging food category. Finally, we highlight key areas for targeted research to advance the development of this growing segment of food products.
Collapse
Affiliation(s)
- Enoch Enorkplim Abotsi
- Boreal Ecosystems, Grenfell Campus, Memorial University of Newfoundland, Newfoundland, Canada
| | - Yashodha Panagodage
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
6
|
Caron E, Van de Walle D, Dewettinck K, Marchesini FH. State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat. Food Res Int 2024; 192:114712. [PMID: 39147544 DOI: 10.1016/j.foodres.2024.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
The emergence of innovative plant-based meat analogs, replicating the flavor, texture, and appearance of animal meat cuts, is deemed crucial for sustainably feeding a growing population while mitigating the environmental impact associated with livestock farming. Multi-material 3D food printing (MM3DFP) has been proposed as a potentially disruptive technology for manufacturing the next generation of plant-based meat analogs. This article provides a comprehensive review of the state of the art, addressing various aspects of 3D printing in the realm of plant-based meat. The disruptive potential of printed meat analogs is discussed with particular emphasis on protein-rich, lipid-rich, and blood-mimicking food inks. The printing parameters, printing requirements, and rheological properties at the different printing stages are addressed in detail. As food rheology plays a key role in the printing process, an appraisal of this subject is performed. Post-printing treatments are assessed based on the extent of improvement in the quality of 3D-printed plant-based meat analogs. The meat-mimicking potential is revealed through sensory attributes, such as texture and flavor. Furthermore, there has been limited research into food safety and nutrition. Economically, the 3D printing of plant-based meat analogs demonstrates significant market potential, contingent upon innovative decision-making strategies and supportive policies to enhance consumer acceptance. This review examines the current limitations of this technology and highlights opportunities for future developments.
Collapse
Affiliation(s)
- Elise Caron
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium; Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium.
| | - Davy Van de Walle
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Flávio H Marchesini
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium
| |
Collapse
|
7
|
Zhang ZA, Xun XM, Herman RA, Zhang ZP, Yan CH, Gong LC, Wang J. Mulberry (Morus alba L.) leaf powder modified the processing of meat alternatives: Principal component analysis from apparent properties to chemical bonds. Food Chem 2024; 450:139318. [PMID: 38613965 DOI: 10.1016/j.foodchem.2024.139318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
For texture control in plant-meat alternatives, the interrelationship between apparent characteristics and chemical bonds in high-fiber formulations remains unclear. The influence of mulberry leaf powder on apparent characteristics and chemical bonds of raw materials, block and strip products at addition amounts of 0.5-25% was analyzed. The results showed that 8% addition significantly increased the chewiness of the block by 98.12%. The strips' texture shows a downward trend, and the processing produced more redness and color difference. Additives promoted the formation of voids, lamellar and filamentous structures, and the strip produced more striped structures. Disulfide bonds significantly increased in the block, and the β-turn in the secondary structure enhanced by 12.20%. The β-turn transformed into a β-sheet in strips. Principal component analysis revealed that the texture improvement was associated with producing disulfide bonds and β-turn, providing a basis for high-fiber components to improve products' apparent characteristics by chemical bonds.
Collapse
Affiliation(s)
- Zhi-Ang Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiao-Meng Xun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhan-Peng Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Cheng-Hai Yan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lu-Chan Gong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
8
|
Marczak A, Mendes AC. Dietary Fibers: Shaping Textural and Functional Properties of Processed Meats and Plant-Based Meat Alternatives. Foods 2024; 13:1952. [PMID: 38928893 PMCID: PMC11202949 DOI: 10.3390/foods13121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The search for alternative sources of plant-based ingredients to improve the textural and sensory properties of plant-based meat alternatives (PMAs) is a growing trend, with the potential to enhance the sustainability of global food systems. While much focus has been placed on plant-based proteins, it is known today that dietary fibers (DFs) can also play a key role in the textural and other physicochemical properties of traditional processed meat products and PMAs. This review examined the latest scientific literature regarding the advantages of using DF in food. It showcases the latest applications of DF in processed meats, PMAs, and the effects of DF on the functional properties of food products, thereby aiming to increase DF applications to create improved, healthier, and more sustainable meat and PMA foods. The predominant effects of DF on PMAs and processed meats notably include enhanced gel strength, emulsion stability, improved water-holding capacity, and the formation of a uniform, porous microstructure. DF also commonly enhances textural properties like hardness, chewiness, springiness, and cohesiveness. While the impact of DF on processed meats mirrors that of PMAs, selecting the right DF source for specific applications requires considering factors such as chemical structure, solubility, size, concentration, processing conditions, and interactions with other components to achieve the desired outcomes.
Collapse
Affiliation(s)
| | - Ana C. Mendes
- Research Group for Food Production Engineering, Technical University of Denmark (DTU)-Food, Henrik Dams Allé B202, 2800 Kgs., 2800 Lyngby, Denmark
| |
Collapse
|
9
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
10
|
Zhang T, Yu S, Pan Y, Li H, Liu X, Cao J. Properties of texturized protein and performance of different protein sources in the extrusion process: A review. Food Res Int 2023; 174:113588. [PMID: 37986454 DOI: 10.1016/j.foodres.2023.113588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The need for protein is increasing due to the rapid growth of the global population. However, conventional animal meat production has caused severe environmental, land usage, and other issues. Meat substitutes can provide consumers with a high-quality alternative to protein. Texturized protein (TP) is a critical ingredient in meat substitutes and is mainly obtained through extrusion processing. Therefore, this review first discussed the essential physical properties of TP, including appearance and structure, water-holding capacity (WHC) and oil-holding capacity (OHC), texture, and sensory properties. The performance of plant and novel source proteins in extrusion processing is also summarized. The properties of the desired TP should be considered first before extrusion processing. Under different extrusion parameters, proteins from the same source can exhibit varying properties. Although the novel source proteins can adversely affect TP quality, their high yield and environmental protection are worthy of further study. This paper aims to review the impact of proteins from different sources on the properties of TP during the extrusion process and discuss practical research methods for TP.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100000, China.
| | - Shengjuan Yu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100000, China.
| | - Yihao Pan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100000, China.
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100000, China.
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100000, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100000, China.
| | - Jinnuo Cao
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan 056000, China.
| |
Collapse
|
11
|
Chen Y, Lan D, Wang W, Zhang W, Wang Y. Quality characteristics of peanut protein-based patties produced with pre-emulsified olive oil as a fat replacer: Influence of acylglycerol type. Int J Biol Macromol 2023; 252:126262. [PMID: 37567535 DOI: 10.1016/j.ijbiomac.2023.126262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The emulsion (O/W) may be used as a fat replacer to develop healthier meat analogs. The purpose of this work was to evaluate the effects of oil incorporation methods (direct oil addition and emulsion addition) and oil types [triacylglycerol (TAG) and diacylglycerol (DAG)] on the quality characteristics of peanut protein-based patties crosslinked by transglutaminase (TGase). The patties formulated with emulsions showed larger texture parameters (springiness, cohesiveness and gumminess), lower cooking loss and higher acceptability compared with directly adding oil. The rheological results confirmed that the presence of emulsions strengthened the gel structure in patties, which allowed the patties containing emulsions to stabilize free water. Whereas, TAG-based emulsion was more effective than DAG-based emulsion in improving quality of products, possibly because the competitive adsorption at oil-water interface of DAG reduced the crosslinking between the interfacial protein and adjacent protein molecules. This study revealed the relationship between the acylglycerol type in emulsion and the patty quality, providing a reference for the development of plant-based patties.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Weifei Wang
- Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Yu J, Wang L, Zhang Z. Plant-Based Meat Proteins: Processing, Nutrition Composition, and Future Prospects. Foods 2023; 12:4180. [PMID: 38002236 PMCID: PMC10670130 DOI: 10.3390/foods12224180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The growing need for plant-based meat alternatives promotes the rapid progress of the food industry. Processing methods employed in plant-based meat production are critical to preserving and enhancing their nutritional content and health benefits, directly impacting consumer acceptance. Unlike animal-based food processing, the efficiency of protein extraction and processing methods plays a crucial role in preserving and enriching the nutritional content and properties. To better understand the factors and mechanisms affecting nutrient composition during plant-based meat processing and identify key processing steps and control points, this work describes methods for extracting proteins from plants and processing techniques for plant-based products. We investigate the role of nutrients and changes in the nutrients during plant protein product processing. This article discusses current challenges and prospects.
Collapse
Affiliation(s)
- Jialing Yu
- College of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Liyuan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
Louis F, Furuhashi M, Yoshinuma H, Takeuchi S, Matsusaki M. Mimicking Wagyu beef fat in cultured meat: Progress in edible bovine adipose tissue production with controllable fatty acid composition. Mater Today Bio 2023; 21:100720. [PMID: 37455817 PMCID: PMC10339247 DOI: 10.1016/j.mtbio.2023.100720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Since the current process of livestock meat production has considerable effects on the global environment, leading to high emissions of greenhouse gases, cultured meat has recently attracted attention as a suitable alternative way to acquire animal proteins. However, while most published studies on cell-cultured meat have focused on muscle tissue culture, fat production which is an important component of the process has often been neglected from this technology, even though it can enhance the meat's final taste, aroma, tenderness, texture, and palatability. In this study, we focused on bovine muscle reconstruction by monitoring and optimizing the possible expansion rate of isolated primary bovine adipose stem cells and their adipogenesis differentiation to be fully edible for cultured meat application. After approximatively 100 days of serial passages, the bovine adipose-derived stem cells, isolated from muscle tissue, underwent 57 ± 5 doublings in the edible cell culture medium condition. This implies that by cultivating and amplifying them, a minimum of 2.9 × 1022 cells can be obtained from around 10 g of fat. It was discovered that these cells retain their adipogenesis differentiation ability for at least 12 passages. Moreover, the final lipid composition could be controlled by adjusting the fatty acid composition of the culture medium during the differentiation process, resulting in organoleptic features similar to those of real fat from muscle. This was especially so for the cis isomer oleic acid percentage, an important part of high-grade Japanese Wagyu meat. These characteristics of the primary bovine adipose-derived stem cell proliferation and adipogenesis differentiation provide valuable insights for the in vitro production of meat alternatives.
Collapse
Affiliation(s)
- Fiona Louis
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mai Furuhashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Global Innovation Center, Nissin Foods Holdings Co., Ltd, Tokyo, Japan
| | - Haruka Yoshinuma
- Global Innovation Center, Nissin Foods Holdings Co., Ltd, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Chen Y, Lan D, Wang W, Zhang W, Wang Y. Effect of transglutaminase-catalyzed crosslinking behavior on the quality characteristics of plant-based burger patties: A comparative study with methylcellulose. Food Chem 2023; 428:136754. [PMID: 37418873 DOI: 10.1016/j.foodchem.2023.136754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Transglutaminase (TGase) is gaining increasing recognition as a novel and healthier bio-binder for meat analogs. This work focused on the TGase-induced crosslinking behaviors, and then evaluated the difference in quality characteristics (Texture, water distribution, cooking properties, volatile flavor and protein digestibility) of peanut protein-based burger patties treated with TGase and traditional binder (methylcellulose, MC). TGase-catalyzed crosslinking, enabling amino acids to participate in the formation of covalent bonds rather than non-covalent bonds, and promoted the formation of protein aggregates and dense gel networks by changing the protein structure, ultimately improving the quality characteristics of burger patties. Compared with the TGase treatment, MC-treated burger patties showed a greater texture parameter, lower cooking loss, higher flavor retention but a lower degree of digestibility. The findings will contribute to a better understanding of the roles of TGase and traditional binders in plant-based meat analogs.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Weifei Wang
- Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan 528225, China.
| |
Collapse
|
15
|
Bakhsh A, Park J, Baritugo KA, Kim B, Sil Moon S, Rahman A, Park S. A holistic approach toward development of plant-based meat alternatives through incorporation of novel microalgae-based ingredients. Front Nutr 2023; 10:1110613. [PMID: 37229478 PMCID: PMC10203216 DOI: 10.3389/fnut.2023.1110613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
This study explored the changes in the physiochemical, textural, sensory, and functional characteristics of plant-based meat (PBM) after incorporating novel plant-based ingredients including spirulina (SPI), duck Weed (DW), and yellow Chlorella (YC). In the chromaticity evaluation, the YC group (YCI YC2, and YC3%) displayed significant differences (p < 0.05) in lightness (L*) indices as compared to the control. Whereas, based on concertation gradient of SPI microalgae (SP0.5, SP0.7, and SP1%) incorporated into PBM patties demonstrated that SPI 1 had the lowest values (p < 0.05) in redness (a*) and yellowness (b*) followed by SPI 0.7 and SPI 0.5% concentration, respectively. The concentration gradient of the YC group indicated that YC3 was intended to be the highest crude fat value followed by YC2 and YCI. The ash content in PBM patties increased considerably (p < 0.05) as the concentration level of microalgae advanced in all treated groups. Based on the concentration level of YC incorporated microalgae into PBM patties indicated that YC 3 had the highest (p < 0.05) gumminess and chewiness while YC 1 had the lowest reported values in terms of gumminess and chewiness. Moreover, springiness and cohesiveness showed considerable differences between SPI and YC groups. In the sensory evaluation, SPI 1 showed the lowest value only in color and appearance (p < 0.05), conversely, the other sensory parameters were non-significant among all treatment groups (p > 0.05). The micronutrient in PBM presented an irregular pattern after incorporating various ingredients. However, levels were higher (p < 0.05) in the DW group (DW 0.5 DW 0.7, and DW% 1) than those in the other groups. Moreover, the SPI and YC groups showed detectable levels of diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with, SP 1 showing the highest level of antioxidant activity. Acknowledging the limited research on PBM production, extraction technologies, and selecting various novel suitable ingredients in meat substitutes. Hence, to fill this knowledge gap an attempt has been made to incorporate various concentrations of microalgae including SPI, YC, and DW to enhance the quality and functionality of meat alternatives. To the best of our knowledge, this is the first report that describes the physiochemical, textural, sensory, and nutritional attributes of PBM incorporated with novel microalgae. Collectively these results indicate that the incorporation of SPI, DW, and YC may improve the quality of PBM without showing deleterious outcomes on the quality and functionality of the ultimate PBM products.
Collapse
Affiliation(s)
- Allah Bakhsh
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Juhee Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Kei Anne Baritugo
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Bosung Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Sung Sil Moon
- Healthy Food Technology, Sunjin Co., Ltd., Icheon, Republic of Korea
| | - Attaur Rahman
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Huang L, Liu S, Wang Y, Li H, Cao J, Liu X. Effect of cooking methods and polysaccharide addition on the cooking performance of cubic fat substitutes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
17
|
Mehany T, Siddiqui SA, Olawoye B, Olabisi Popoola O, Hassoun A, Manzoor MF, Punia Bangar S. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit Rev Food Sci Nutr 2023; 64:7237-7267. [PMID: 36861223 DOI: 10.1080/10408398.2023.2183381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.
Collapse
Affiliation(s)
- Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Babatunde Olawoye
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Oyekemi Olabisi Popoola
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|