1
|
Souza M, Moura FS, Lima LCV, Amaral MJM. Association between higher consumption of ultra-processed foods and risk of diabetes and its complications: A systematic review & updated meta-analysis. Metabolism 2025; 165:156134. [PMID: 39848440 DOI: 10.1016/j.metabol.2025.156134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND & AIMS Recent epidemiologic studies on the association between higher consumption of ultra-processed foods (UPFs) and risk of incident diabetes have reported conflicting results in populations worldwide. We conducted an updated systematic review and meta-analysis to quantify the magnitude of this association. METHODS PubMed and Embase databases were systematically searched (from 2009 to November 14, 2024) for prospective cohort studies reporting data on the association between UPF intake (defined by the NOVA classification) and the risk of incident diabetes or its complications in adults (>18 years). Meta-analysis was performed using random-effects modelling to obtain pooled hazard ratios (HRs) with 95 % confidence intervals (CIs), and the GRADE approach was applied to evaluate the certainty of evidence. RESULTS We included 14 prospective cohort studies with a total of 692,508 participants. The highest UPF consumption was significantly associated with an increased risk of diabetes (n = 9 studies; HR 1.24, 95 % CI 1.14 to 1.34, I2 = 69 %) compared with the lowest UPF intake (very low certainty of evidence). Subgroup analysis showed that studies published in 2024 had a smaller effect size compared with earlier studies. There were no significant differences between subgroups based on study location, duration of follow-up, method and frequency of dietary intake assessment, and risk of bias. Sensitivity analyses did not change these findings. Each 10 % increase in total UPF consumption was associated with a 13 % (n = 4 studies; HR 1.13, 95 % CI 1.08 to 1.18, I2 = 37 %) increased risk of diabetes. Preliminary data from 4 cohort studies also suggest that high UPF consumption may be associated with complications in diabetic patients, including microvascular/cardiovascular disease, chronic kidney disease, and mortality. CONCLUSION UPF consumption is associated with a higher risk of incident diabetes and may contribute to its complications. Urgent public health efforts should prioritize the reduction of UPF consumption.
Collapse
Affiliation(s)
- Matheus Souza
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Felipe S Moura
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan C V Lima
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio J M Amaral
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Anastasiou IA, Kounatidis D, Vallianou NG, Skourtis A, Dimitriou K, Tzivaki I, Tsioulos G, Rigatou A, Karampela I, Dalamaga M. Beneath the Surface: The Emerging Role of Ultra-Processed Foods in Obesity-Related Cancer. Curr Oncol Rep 2025; 27:390-414. [PMID: 40014232 PMCID: PMC11976848 DOI: 10.1007/s11912-025-01654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
PURPOSEOF REVIEW Ultra-processed foods (UPFs) are becoming more and more important in daily diets around the world; in some cases, they can account for as much as 60% of daily energy intake. Epidemiological evidence suggests that this shift toward high levels of food processing may be partially responsible for the global obesity epidemic and the rise in the prevalence of chronic diseases. RECENT FINDINGS Few prospective studies have examined the relationship between UPF consumption and cancer outcomes. According to currently available information, UPFs may increase the risk of cancer due to their obesogenic properties and exposure to substances that can cause cancer, such as certain food additives and pollution from product processing. The complex relationship between obesity and cancer involves factors such as immune dysregulation, altered adipokine and sex hormone levels, abnormal fatty acid metabolism, extracellular matrix remodeling, and chronic inflammation. Addressing cancer risk associated with UPF consumption could involve a multifaceted approach, including consumer behavior modification programs and robust public health regulations aimed at enhancing food environments. Improved knowledge of the potential dual negative impacts of UPFs on the environment and cancer risk is one of the priority areas we identify for future research and policy implications. Various approaches could be used to prevent cancers associated with UPF consumption, such as consumer behavior change programs and stricter public health regulations needed to improve the food environment. This review examines for the first time the potential role of UPFs in cancer risk associated with obesity, exploring underlying biological mechanisms and identifying key areas for future research and policy action, including the dual environmental and health impact of UPFs.
Collapse
Affiliation(s)
- Ioanna A Anastasiou
- Diabetes CenterDepartment of Propaedeutic Internal MedicineMedical School, Laiko General Hospital, National and Kapodistrian University of Athens, FirstAthens, Greece
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Dimitris Kounatidis
- Diabetes CenterDepartment of Propaedeutic Internal MedicineMedical School, Laiko General Hospital, National and Kapodistrian University of Athens, FirstAthens, Greece
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Alexandros Skourtis
- Department of Internal Medicine, Evangelismos General Hospital, 10676, Athens, Greece
| | - Krystalia Dimitriou
- Second Department of Internal Medicine, Medical School, National &, Hippokratio General Hospital, Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ilektra Tzivaki
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Georgios Tsioulos
- Fourth Department of Internal Medicine, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Anastasia Rigatou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
3
|
Hojjati Kermani MA, Awlqadr FH, Talebi S, Mehrabani S, Ghoreishy SM, Wong A, Amirian P, Zarpoosh M, Moradi S. Ultra-processed foods and risk of declined renal function: a dose-response meta-analysis of 786,216 participants. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:79. [PMID: 40098054 PMCID: PMC11916343 DOI: 10.1186/s41043-025-00799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVES Earlier investigations have documented an association between elevated consumption of Ultra-Processed Foods (UPFs) and adverse renal outcomes. To explore this relationship further, we executed a comprehensive dose-response meta-analysis to examine the link between UPFs intake and the risk of declined renal function. SETTING A systematic search was completed utilizing the ISI Web of Science, Scopus, Embase as well as PubMed/MEDLINE databases (without any restrictions), up until September 5, 2024. Effect sizes of declined renal function were recalculated by applying a random effects model. The GRADE tool was adopted to assess the certainty of the evidence, while study quality and potential publication bias were examined via validated methods such as the Newcastle-Ottawa Scale, Egger's regression asymmetry and Begg's rank correlation test. RESULTS Thirty-three studies (comprising 786,216 participants) were incorporated in the quantitative analysis. The results demonstrated that a greater UPFs intake was significantly associated with an enhanced risk of declined renal function (RR = 1.16; 95% CI: 1.09, 1.23; I2 = 68.8%; p < 0.001; n = 37). Additionally, we observed that each 1-serving-per-day increase in UPFs consumption was associated to a 5% greater risk of reduced renal function (RR = 1.05; 95% CI: 1.02, 1.09; I2 = 80.9%; p = 0.013; n = 9). A positive, linear association between UPF intake and the risk of declined renal function (Pnonlinearity = 0.107, Pdose-response < 0.001) was further displayed in the non-linear dose-response analysis. CONCLUSION Greater exposure to UPFs is positively associated with the risk of declined renal function. The information emphasizes the importance of considering UPFs in the prevention and management of adverse renal outcomes.
Collapse
Affiliation(s)
- Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhang Hameed Awlqadr
- Department of Food Science and Quality Control, Halabja Technical College, Sulaimani Polytechnic University, Kurdistan Region, Iraq
| | - Sepide Talebi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Mehrabani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Parsa Amirian
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mahsa Zarpoosh
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Sajjad Moradi
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
4
|
Barra NG, Fang H, Bhatwa A, Schmidt AM, Syed SA, Steinberg GR, Morrison KM, Surette MG, Wade MG, Holloway AC, Schertzer JD. Food supply toxicants and additives alter the gut microbiota and risk of metabolic disease. Am J Physiol Endocrinol Metab 2025; 328:E337-E353. [PMID: 39871724 DOI: 10.1152/ajpendo.00364.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
Metabolic disease is rising along with both global industrialization and the use of new commercial, agricultural, and industrial chemicals and food additives. Exposure to these compounds may contribute to aspects of metabolic diseases such as obesity, diabetes, and fatty liver disease. Ingesting compounds in the food supply is a key route of human exposure, resulting in the interaction between toxicants or additives and the intestinal microbiota. Toxicants can influence the composition and function of the gut microbiota, and these microbes can metabolize and transform toxicants and food additives. Microbe-toxicant interactions in the intestine can alter host mucosal barrier function, immunity, and metabolism, which may contribute to the risk or severity of metabolic disease development. Targeting the connection between toxicants, food, and immunity in the gut using strategies such as fermentable fiber (i.e., inulin) may mitigate some of the effects of these compounds on host metabolism. Understanding causative factors in the microbe-host relationship that promote toxicant-induced dysmetabolism is an important goal. This review highlights the role of common toxicants (i.e., persistent organic pollutants, pesticides, and fungicides) and food additives (emulsifiers and artificial sweeteners) found in our food supply that alter the gut microbiota and promote metabolic disease development.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Angela M Schmidt
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Saad A Syed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Urrutia-Pereira M, Fogelbach GG, Chong-Neto HJ, Solé D. Food additives and their impact on human health. Allergol Immunopathol (Madr) 2025; 53:26-31. [PMID: 40088018 DOI: 10.15586/aei.v53i2.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/15/2024] [Indexed: 03/17/2025]
Abstract
Increasing evidence suggests that high consumption of ultra-processed foods (UPF) is associated with an increase in noncommunicable diseases, overweight, and obesity. This review aimed to verify the association of UPF with inflammatory diseases, especially allergic diseases. To identify relevant articles, an extensive literature search was conducted using the two most important search sites - PubMed and Google Scholar. Specific Medical Subject Headings (MeSHes) such as "food additives and health," "food additives and immune system," and "food additives and diseases" were used to conduct an advanced search. Emulsifiers have been, particularly, implicated in disrupting intestinal barrier function, modifying gut microbiota, and promoting inflammation, which may contribute to the development of food allergies and inflammatory diseases. While food additives serve various functions in the food industry, concerns regarding their impact on health, particularly in systemic autoimmune and metabolic conditions, have been raised. Common additives have been associated with allergic reactions, intolerances, and sensitivities.
Collapse
Affiliation(s)
- Marilyn Urrutia-Pereira
- Department of Pediatrics, Faculty of Medicine, Federal University of Pampa, Uruguaiana RS, Brazil
| | | | - Herberto José Chong-Neto
- Department of Pediatrics, Division of Allergy and Immunology, Federal University of Paraná, Curitiba, Brazil;
| | - Dirceu Solé
- Department of Pediatrics, Division of Allergy, Clinical Immunology and Rheumatology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Bellanco A, Requena T, Martínez-Cuesta MC. Polysorbate 80 and carboxymethylcellulose: A different impact on epithelial integrity when interacting with the microbiome. Food Chem Toxicol 2025; 196:115236. [PMID: 39778648 DOI: 10.1016/j.fct.2025.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The consumption of dietary emulsifiers, including polysorbate 80 (P80) and sodium carboxymethylcellulose (CMC), has raised safety concerns due to its interaction with the intestinal microbiome. This study demonstrated that increasing concentrations of P80 and CMC added to a dynamic four-stage gut microbiota model (BFBL gut simulator) altered the microbiome composition and impacted epithelial integrity in a dose-dependent manner. 16S rDNA amplicon-based metagenomics analysis revealed that these emulsifiers increased microbial groups with proinflammatory capacities while decreasing microbial taxa known to enhance barrier function. Increasing doses of P80 significantly decreased Bacteroides dorei and Akkermansia, taxa associated with anti-inflammatory potential, while increasing doses of CMC were linked to a higher abundance of Ruminococcus torques and Hungatella, which negatively impact barrier function. Both emulsifiers displayed a different impact on epithelial integrity when interacting with the microbiome. On one hand, supernatants from the BFBL simulator fed with P80 disrupted epithelial integrity to a lesser extent than the additive alone. On the other hand, both the microbiota and the supernatants from the BFBL simulator fed with CMC diminished the epithelial integrity, though the additive itself did not. These findings highlight the need to incorporate the gut microbiome in the risk assessment of these additives.
Collapse
Affiliation(s)
- Alicia Bellanco
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Michels D, Verkempinck SHE, den Broeck LV, Spaepen R, Vermeulen K, Roelants S, Wealleans A, Grauwet T. Molecular characteristics of glycolipids determine oil-water interfacial behavior and in vitro lipid digestion kinetics. Food Res Int 2025; 202:115714. [PMID: 39967168 DOI: 10.1016/j.foodres.2025.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
An extensive amount of research has been conducted on a multitude of emulsifiers regarding their effect on o/w emulsion characteristics and lipolysis kinetics. However, there is an emerging need towards the understanding of biobased emulsifier characteristics. Therefore, this research studied the effect of 6 glycolipids on interfacial tension, emulsion microstructure throughout in vitro digestion, and lipolysis kinetics. Findings showed that molecular differences between glycolipids, such as the degree of acetylation, lactonization, and symmetry, substantially affected their behavior on the oil-water (o/w) interface, lowering the interfacial tensions to values ranging between 2 and 18 mN/m. Glycolipids with a higher amount of acetyl groups, lower tendency to self-assemble, and/or smaller molecular volume on the interface, decreased the interfacial tension substantially more. Therefore, acetylated lactonic sophorolipid decreased the interfacial tension most, while non-acetylated sophoroside showed the smallest effect on the interfacial tension. While all emulsions were stable and initially had similar droplet sizes, some were unstable throughout the simulated upper digestive tract, resulting in significantly different hydrolysis behaviors. Acetylated lactonic sophorolipid and non-acetylated glucolipid were more hydrophobic than the remaining 4 glycolipids, causing this gastric instability resulting in lower lipolysis extents by the end of the small intestinal phase. The acetylated sophoroside emulsion was unstable during the small intestinal phase, attributed to bile salt interactions. Therefore, this research concludes that molecular changes between glycolipids give rise to significantly different emulsion and digestion properties. These insights can be used in future work to optimize glycolipid structure and subsequent functional properties.
Collapse
Affiliation(s)
- Daphne Michels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Lore Van den Broeck
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Riet Spaepen
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | - Karen Vermeulen
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | | | - Alexandra Wealleans
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
8
|
Valitutti F, Mennini M, Monacelli G, Fagiolari G, Piccirillo M, Di Nardo G, Di Cara G. Intestinal permeability, food antigens and the microbiome: a multifaceted perspective. FRONTIERS IN ALLERGY 2025; 5:1505834. [PMID: 39850945 PMCID: PMC11754301 DOI: 10.3389/falgy.2024.1505834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases. Several gaps of knowledge still exist as regards this multi-level interaction. In this review we aim to summarize current evidence linking food antigens, microbiota and gut permeability interference in diverse disease conditions such as celiac disease (CeD), non-celiac wheat sensitivity (NCWS), food allergies (FA), eosinophilic gastrointestinal disorder (EOGID) and irritable bowel syndrome (IBS). Specific food elimination diets are recommended for CeD, NCWS, FA and in some cases for EOGID. Undoubtfully, each of these conditions is very different and quite unique, albeit food antigens/compounds, intestinal permeability and specific microbiota signatures orchestrate immune response and decide clinical outcomes for all of them.
Collapse
Affiliation(s)
- Francesco Valitutti
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Maurizio Mennini
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Gianluca Monacelli
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Giulia Fagiolari
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Marisa Piccirillo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Rossato S, Oakes EG, Barbhaiya M, Sparks JA, Malspeis S, Willett WC, Khandpur N, Costenbader KH. Ultraprocessed Food Intake and Risk of Systemic Lupus Erythematosus Among Women Observed in the Nurses' Health Study Cohorts. Arthritis Care Res (Hoboken) 2025; 77:50-60. [PMID: 38937143 PMCID: PMC11671610 DOI: 10.1002/acr.25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE We assessed ultraprocessed food (UPF) intake and systemic lupus erythematosus (SLE) incidence within the prospective Nurses' Health Study (NHS) cohorts. METHODS A total of 204,175 women were observed (NHS 1984-2016; NHSII 1991-2017). Semiquantitative food frequency questionnaires were completed every two to four years. UPF intake was determined as per the Nova classification. Nurses self-reported new doctor-diagnosed SLE, confirmed by medical records. Time-varying Cox regressions estimated hazard ratios (HRs; 95% confidence intervals [CIs]) for patients with incident SLE and SLE by anti-double-stranded DNA (dsDNA) antibody at diagnosis, according to cumulatively updated daily (a) UPF servings, (b) total intake (in grams and milliliters), and (c) percentage of total intake. Analyses adjusted for age, race, cohort, caloric and alcohol intakes, household income, smoking, body mass index (BMI), physical activity, menarchal age, and oral contraceptive use. We tested for interaction with BMI and examined UPF categories. RESULTS Mean baseline age was ~50 years (NHS) and ~36 years (NHSII); 93% self-reported White race. A total of 212 patients with incident SLE were identified. SLE risk was higher in the third versus first UPF tertile (servings per day pooled multivariable [MV] HR 1.56, 95% CI 1.04-2.32; P = 0.03). Results were stronger for dsDNA antibody in patients with SLE (servings per day pooled MV HR 2.05, 95% CI 1.15-3.65; P = 0.01) and for absolute (servings or total) than percentage of total intake. Sugar-sweetened/artificially sweetened beverages were associated with SLE risk (third vs first tertile MV HR 1.45, 95% CI 1.01-2.09). No BMI interactions were observed. CONCLUSION Higher cumulative average daily UPF intake was associated with >50% increased SLE risk and with doubled risk for anti-dsDNA antibody in patients with SLE. Many deleterious effects on systemic inflammation and immunity are postulated.
Collapse
Affiliation(s)
- Sinara Rossato
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emily G. Oakes
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Medha Barbhaiya
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York
| | - Jeffrey A. Sparks
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susan Malspeis
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Walter C. Willett
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neha Khandpur
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Wageningen University, Netherlands
| | | |
Collapse
|
10
|
Besedin D, Shah R, Brennan C, Panzeri E, Hao Van TT, Eri R. Food additives and their implication in inflammatory bowel disease and metabolic syndrome. Clin Nutr ESPEN 2024; 64:483-495. [PMID: 39522876 DOI: 10.1016/j.clnesp.2024.10.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Over the past half a century the Western diet (WD) has become saturated with food additives. During the same time, there has been an increase in Western diseases, such as inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Emerging research has shown that food additives may be implicated in these diseases. However, critics have suggested that some of this research is problematic and may cause unnecessary fear amongst consumers. Here we review the emerging research concerning food additives and their implication in IBD and MetS, and criticisms thereof. To make the review more relevant to the WD, we only included common food additives, selected using supermarket data. Over a dozen common food additives from four categories were identified for their potential role in directly promoting these diseases. A consistent limitation of the research was the use of unrealistic human exposure conditions, such as high doses and modes of administration, as well as a lack of human trials. Another limitation was the absence of studies investigating the potential synergetic effect of consuming multiple food additives, as is common in the WD. Despite the limitations, there is some evidence that common food additives may be contributing to these additives, especially via their dysbiotic effect on the gut microbiota.
Collapse
Affiliation(s)
- Darislav Besedin
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rohan Shah
- School of Health and Biomedical Sciences, STEM College, RMIT University, Vic 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia.
| | - Charles Brennan
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | | | - Thi Thu Hao Van
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| |
Collapse
|
11
|
Zhang K, Zhang Q, Qiu H, Ma Y, Hou N, Zhang J, Kan C, Han F, Sun X, Shi J. The complex link between the gut microbiome and obesity-associated metabolic disorders: Mechanisms and therapeutic opportunities. Heliyon 2024; 10:e37609. [PMID: 39290267 PMCID: PMC11407058 DOI: 10.1016/j.heliyon.2024.e37609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial interactions are widespread and important processes that support the link between disease and microbial ecology. The gut microbiota is a major source of microbial stimuli that can have detrimental or beneficial effects on human health. It is also an endocrine organ that maintains energy homeostasis and host immunity. Obesity is a highly and increasingly prevalent metabolic disease and the leading cause of preventable death worldwide. An imbalance in the gut microbiome is associated with several diseases including obesity-related metabolic disorders. This review summarizes the complex association between the gut microbiome and obesity-associated metabolic diseases and validates the role and mechanisms of ecological dysregulation in the gut in obesity-associated metabolic disorders. Therapies that could potentially alleviate obesity-associated metabolic diseases by modulating the gut microbiota are discussed.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Qi Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
12
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
13
|
Singh S, Olayinka OT, Fr J, Nisar MR, Kotha R, Saad-Omer SI, Nath TS. Food Additives' Impact on Gut Microbiota and Metabolic Syndrome: A Systematic Review. Cureus 2024; 16:e66822. [PMID: 39280570 PMCID: PMC11398613 DOI: 10.7759/cureus.66822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The human gut microbiota (GM) might play a significant role in the development or remission of metabolic syndrome (MetS) and associated disorders. Contributing factors include diets rich in unhealthy, processed foods that contain preservatives, emulsifiers, and stabilizers. Diet influences the GM's composition, diversity, and species richness in a time-dependent manner. Food additives can alter the GM and contribute to the pathophysiology of MetS by disrupting the intestinal barrier and inducing low-grade systemic inflammation. Our systematic review aims to clarify the relationships among food additives, GM, and MetS. We summarize current knowledge on how food additives interact with GM and the pathogenic role of the microbiota in the development of MetS, including obesity and type 2 diabetes. This review also discusses how disturbances in GM caused by stabilizers and emulsifiers may link to MetS, highlighting the impact of this condition on the development of diabetes and obesity. Furthermore, this review seeks a detailed explanation of how dietary choices related to GM dysbiosis may contribute to MetS. However, more comprehensive and well-designed in vitro, animal, and clinical studies are needed for a better understanding, as research on the role of GM in MetS is still emerging.
Collapse
Affiliation(s)
- Shivani Singh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Oluwatoba T Olayinka
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jaslin Fr
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mah Rukh Nisar
- Neurology/Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rudrani Kotha
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sabaa I Saad-Omer
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | |
Collapse
|
14
|
Assaf S, Park J, Chowdhry N, Ganapuram M, Mattathil S, Alakeel R, Kelly OJ. Unraveling the Evolutionary Diet Mismatch and Its Contribution to the Deterioration of Body Composition. Metabolites 2024; 14:379. [PMID: 39057702 PMCID: PMC11279030 DOI: 10.3390/metabo14070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Over the millennia, patterns of food consumption have changed; however, foods were always whole foods. Ultra-processed foods (UPFs) have been a very recent development and have become the primary food source for many people. The purpose of this review is to propose the hypothesis that, forsaking the evolutionary dietary environment, and its complex milieu of compounds resulting in an extensive metabolome, contributes to chronic disease in modern humans. This evolutionary metabolome may have contributed to the success of early hominins. This hypothesis is based on the following assumptions: (1) whole foods promote health, (2) essential nutrients cannot explain all the benefits of whole foods, (3) UPFs are much lower in phytonutrients and other compounds compared to whole foods, and (4) evolutionary diets contributed to a more diverse metabolome. Evidence will be presented to support this hypothesis. Nutrition is a matter of systems biology, and investigating the evolutionary metabolome, as compared to the metabolome of modern humans, will help elucidate the hidden connections between diet and health. The effect of the diet on the metabolome may also help shape future dietary guidelines, and help define healthy foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Owen J. Kelly
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; (S.A.); (J.P.); (N.C.); (M.G.); (S.M.); (R.A.)
| |
Collapse
|
15
|
Kimilu N, Gładyś-Cieszyńska K, Pieszko M, Mańkowska-Wierzbicka D, Folwarski M. Carrageenan in the Diet: Friend or Foe for Inflammatory Bowel Disease? Nutrients 2024; 16:1780. [PMID: 38892712 PMCID: PMC11174395 DOI: 10.3390/nu16111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
While the exact pathogenesis of IBD remains unclear, genetic, environmental and nutritional factors as well as the composition of the gut microbiome play crucial roles. Food additives, which are increasingly consumed in the Western diet, are being investigated for their potential effects on IBD. These additives can affect gut health by altering the composition of the microbiota, immune responses, and intestinal permeability, contributing to autoimmune diseases and inflammation. Despite the growing number of studies on food additives and IBD, the specific effects of carrageenan have not yet been sufficiently researched. This review addresses this gap by critically analyzing recent studies on the effects of carrageenan on the gut microbiota, intestinal permeability, and inflammatory processes. We searched the MEDLINE and SCOPUS databases using the following terms: carrageenan, carrageenan and inflammatory bowel disease, carrageenan and cancer, food additives and microbiome, food additives and intestinal permeability, and food additives and autoimmune diseases. In animal studies, degraded carrageenan has been shown to trigger intestinal ulceration and inflammation, highlighting its potential risk for exacerbating IBD. It can affect the gut microbiota, reduce bacterial diversity, and increase intestinal permeability, contributing to "leaky gut" syndrome. Some studies suggest that carrageenan may inhibit the growth of cancer cells by influencing the progression of the cell cycle, but the anti-cancer effect is still unclear. Carrageenan may also increase glucose intolerance and insulin resistance. Further research is needed to determine whether carrageenan should be excluded from the diet of individuals with IBD.
Collapse
Affiliation(s)
- Nina Kimilu
- Students’ Scientific Circle of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Magdalena Pieszko
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdansk, Poland (M.P.)
| | - Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdansk, Poland (M.P.)
- Home Enteral and Parenteral Nutrition Unit, Nicolaus Copernicus Hospital, 80-803 Gdansk, Poland
| |
Collapse
|
16
|
Du M, Hu FB. Food additive emulsifiers: a new risk factor for type 2 diabetes? Lancet Diabetes Endocrinol 2024; 12:291-292. [PMID: 38663942 PMCID: PMC11217929 DOI: 10.1016/s2213-8587(24)00095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Mengxi Du
- Departments of Nutrition and Epidemiology, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Frank B Hu
- Departments of Nutrition and Epidemiology, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Salame C, Javaux G, Sellem L, Viennois E, de Edelenyi FS, Agaësse C, De Sa A, Huybrechts I, Pierre F, Coumoul X, Julia C, Kesse-Guyot E, Allès B, Fezeu LK, Hercberg S, Deschasaux-Tanguy M, Cosson E, Tatulashvili S, Chassaing B, Srour B, Touvier M. Food additive emulsifiers and the risk of type 2 diabetes: analysis of data from the NutriNet-Santé prospective cohort study. Lancet Diabetes Endocrinol 2024; 12:339-349. [PMID: 38663950 DOI: 10.1016/s2213-8587(24)00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Experimental studies have suggested potential detrimental effects of emulsifiers on gut microbiota, inflammation, and metabolic perturbations. We aimed to investigate the associations between exposures to food additive emulsifiers and the risk of type 2 diabetes in a large prospective cohort of French adults. METHODS We analysed data from 104 139 adults enrolled in the French NutriNet-Santé prospective cohort study from May 1, 2009, to April 26, 2023; 82 456 (79·2%) were female and the mean age was 42·7 years (SD 14·5). Dietary intakes were assessed with three 24 h dietary records collected over three non-consecutive days, every 6 months. Exposure to additive emulsifiers was evaluated through multiple food composition databases and ad-hoc laboratory assays. Associations between cumulative time-dependent exposures to food additive emulsifiers and the risk of type 2 diabetes were characterised with multivariable proportional hazards Cox models adjusted for known risk factors. The NutriNet-Santé study is registered at ClinicalTrials.gov (NCT03335644). FINDINGS Of 104 139 participants, 1056 were diagnosed with type 2 diabetes during follow-up (mean follow-up duration 6·8 years [SD 3·7]). Intakes of the following emulsifiers were associated with an increased risk of type 2 diabetes: total carrageenans (hazard ratio [HR] 1·03 [95% CI 1·01-1·05] per increment of 100 mg per day, p<0·0001), carrageenans gum (E407; HR 1·03 [1·01-1·05] per increment of 100 mg per day, p<0·0001), tripotassium phosphate (E340; HR 1·15 [1·02-1·31] per increment of 500 mg per day, p=0·023), acetyl tartaric acid esters of monoglycerides and diglycerides of fatty acids (E472e; HR 1·04 [1·00-1·08] per increment of 100 mg per day, p=0·042), sodium citrate (E331; HR 1·04 [1·01-1·07] per increment of 500 mg per day, p=0·0080), guar gum (E412; HR 1·11 [1·06-1·17] per increment of 500 mg per day, p<0·0001), gum arabic (E414; HR 1·03 [1·01-1·05] per increment of 1000 mg per day, p=0·013), and xanthan gum (E415, HR 1·08 [1·02-1·14] per increment of 500 mg per day, p=0·013). INTERPRETATION We found direct associations between the risk of type 2 diabetes and exposures to various food additive emulsifiers widely used in industrial foods, in a large prospective cohort of French adults. Further research is needed to prompt re-evaluation of regulations governing the use of additive emulsifiers in the food industry for better consumer protection. FUNDING European Research Council, French National Cancer Institute, French Ministry of Health, IdEx Université de Paris, and Bettencourt-Schueller Foundation.
Collapse
Affiliation(s)
- Clara Salame
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France
| | - Guillaume Javaux
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France
| | - Laury Sellem
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France
| | - Emilie Viennois
- INSERM U1149, Center of Research on Inflammation, Université de Paris, 75018 Paris, France
| | - Fabien Szabo de Edelenyi
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France
| | - Cédric Agaësse
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France
| | - Alexandre De Sa
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France
| | - Inge Huybrechts
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Fabrice Pierre
- NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Xavier Coumoul
- NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France; INSERM UMR-S 1124, Université de Paris, Paris, France
| | - Chantal Julia
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-hôpitaux de Paris (AP-HP), Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France
| | - Benjamin Allès
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France
| | - Léopold K Fezeu
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France
| | - Serge Hercberg
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-hôpitaux de Paris (AP-HP), Bobigny, France
| | - Mélanie Deschasaux-Tanguy
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France
| | - Emmanuel Cosson
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; Diabetology, endocrinology and nutrition Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Sopio Tatulashvili
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; Diabetology, endocrinology and nutrition Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Benoit Chassaing
- NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France; INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Bernard Srour
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France.
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017 Bobigny, France; NACRe French Network for Nutrition And Cancer Research, Jouy-en-Josas, France
| |
Collapse
|
18
|
Nees S, Lutsiv T, Thompson HJ. Ultra-Processed Foods-Dietary Foe or Potential Ally? Nutrients 2024; 16:1013. [PMID: 38613046 PMCID: PMC11013700 DOI: 10.3390/nu16071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The prevalence of non-communicable diseases (NCDs) has steadily increased in the United States. Health experts attribute the increasing prevalence of NCDs, in part, to the consumption of ultra-processed foods (UPFs) based on epidemiological observations. However, no definitive evidence of causality has been established. Consequently, there is an ongoing debate over whether adverse health outcomes may be due to the low nutrient density per kilocalorie, the processing techniques used during the production of UPFs, taste preference-driven overconsumption of calories, or unidentified factors. Recognizing that "the science is not settled," we propose an investigative process in this narrative review to move the field beyond current controversies and potentially identify the basis of causality. Since many consumers depend on UPFs due to their shelf stability, affordability, availability, ease of use, and safety from pathogens, we also suggest a paradigm for guiding both the formulation of UPFs by food designers and the selection of UPFs by consumers.
Collapse
Affiliation(s)
- Sabrina Nees
- Graduate Program in Horticulture and Human Health, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA;
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Henry J. Thompson
- Graduate Program in Horticulture and Human Health, Colorado State University, Fort Collins, CO 80523, USA;
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA;
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
19
|
Bolan S, Sharma S, Mukherjee S, Zhou P, Mandal J, Srivastava P, Hou D, Edussuriya R, Vithanage M, Truong VK, Chapman J, Xu Q, Zhang T, Bandara P, Wijesekara H, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170013. [PMID: 38242452 DOI: 10.1016/j.scitotenv.2024.170013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jajati Mandal
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
| | - Prashant Srivastava
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, Urrbrae, South Australia, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Randima Edussuriya
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - James Chapman
- University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qing Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pramod Bandara
- Department of Food Science and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia.
| |
Collapse
|
20
|
Warren M, O'Connor C, Lee JE, Burton J, Walton D, Keathley J, Wammes M, Osuch E. Predispose, precipitate, perpetuate, and protect: how diet and the gut influence mental health in emerging adulthood. Front Nutr 2024; 11:1339269. [PMID: 38505265 PMCID: PMC10948435 DOI: 10.3389/fnut.2024.1339269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Medicine often employs the 4Ps of predisposing, precipitating, perpetuating, and protective factors to identify salient influences on illness states, and to help guide patient care. Mental illness is a significant cause of morbidity and mortality worldwide. Mental health is a complex combination of biological, psychological, environmental, and social factors. There is growing interest in the gut-brain-microbiome (GBM) axis and its impact on mental health. We use the medical model of the 4Ps to explore factors involving the connection between nutrition and the GBM axis and their associated risks with mental health problems in emerging adults (EAs), a life stage when mental illness onset is the most common. We review the impact of current dietary trends on the GBM and on mental health, and the role that gut microbiome-based interventions can have in modulating the GBM axis of EAs. We discuss the implications of gut health on the GBM and areas for clinical intervention.
Collapse
Affiliation(s)
- Michael Warren
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Colleen O'Connor
- School of Food and Nutritional Sciences, Brescia University College, London, ON, Canada
| | - Ju Eun Lee
- Geriatrics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeremy Burton
- Department of Surgery, Microbiology and Immunology, Lawson Health Research Institute, Western University, London, ON, Canada
| | - David Walton
- School of Physical Therapy, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Justine Keathley
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Michael Wammes
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Elizabeth Osuch
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- First Episode Mood and Anxiety Program, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
21
|
Rinninella E, Costantini L. The Prebiotic Diet: Other Dietary Molecules Implicated in Gut Microbiota Health. Foods 2024; 13:490. [PMID: 38338625 PMCID: PMC10855273 DOI: 10.3390/foods13030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
In 2016, the International Scientific Association for Probiotics and Prebiotics (ISAPP) provided a new definition of a prebiotic as "a substrate that is selectively utilized by host microorganisms conferring a health benefit" [...].
Collapse
Affiliation(s)
- Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, 01100 Viterbo, Italy
| |
Collapse
|
22
|
Tahiri M, Johnsrud C, Steffensen IL. Evidence and hypotheses on adverse effects of the food additives carrageenan (E 407)/processed Eucheuma seaweed (E 407a) and carboxymethylcellulose (E 466) on the intestines: a scoping review. Crit Rev Toxicol 2023; 53:521-571. [PMID: 38032203 DOI: 10.1080/10408444.2023.2270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
This scoping review provides an overview of publications reporting adverse effects on the intestines of the food additives carrageenan (CGN) (E 407)/processed Eucheuma seaweed (PES) (E 407a) and carboxymethylcellulose (CMC) (E 466). It includes evidence from human, experimental mammal and in vitro research publications, and other evidence. The databases Medline, Embase, Scopus, Web of Science Core Collection, Cochrane Database of Systematic Reviews and Epistemonikos were searched without time limits, in addition to grey literature. The publications retrieved were screened against predefined criteria. From two literature searches, 2572 records were screened, of which 224 records were included, as well as 38 records from grey literature, making a total of 262 included publications, 196 on CGN and 101 on CMC. These publications were coded and analyzed in Eppi-Reviewer and data gaps presented in interactive maps. For CGN, five, 69 and 33 research publications on humans, experimental mammals and in vitro experiments were found, further separated as degraded or native (non-degraded) CGN. For CMC, three human, 20 animal and 14 in vitro research publications were obtained. The most studied adverse effects on the intestines were for both additives inflammation, the gut microbiome, including fermentation, intestinal permeability, and cancer and metabolic effects, and immune effects for CGN. Further studies should focus on native CGN, in the form and molecular weight used as food additive. For both additives, randomized controlled trials of sufficient power and with realistic dietary exposure levels of single additives, performed in persons of all ages, including potentially vulnerable groups, are needed.
Collapse
Affiliation(s)
- Mirlinda Tahiri
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Celine Johnsrud
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
23
|
Neumann NJ, Eichner G, Fasshauer M. Flavour, emulsifiers and colour are the most frequent markers to detect food ultra-processing in a UK food market analysis. Public Health Nutr 2023; 26:3303-3310. [PMID: 37855120 PMCID: PMC10755427 DOI: 10.1017/s1368980023002185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE To elucidate which markers of ultra-processing (MUP) and their combinations are best suited to detect ultra-processed food (UPF). DESIGN The study was based on the 206 food and 32 beverage items of the Oxford WebQ which encompass all major foods consumed in the UK. For each Oxford WebQ question, ingredient lists of up to ten matching different commercial products (n 2146) were researched online using data from the two market leaders of groceries in the UK sorted by relevance (Tesco) and by top sellers (Sainsbury's), respectively. According to the NOVA classification, sixty-five MUP were defined, and if the ingredient list of a food product was positive for at least one MUP, it was regarded as UPF. The percentage of UPF items containing specific MUP was calculated. In addition, all combinations of two to six different MUP were assessed concerning the percentage of identified UPF items. SETTING Cross-sectional analysis. PARTICIPANTS None. RESULTS A total of 990 products contained at least one MUP and were, therefore, regarded as UPF. The most frequent MUP were flavour (578 items, 58·4 % of all UPF), emulsifiers (353 items, 35·7 % of all UPF) and colour (262 items, 26·5 % of all UPF). Combined, these three MUP detected 79·2 % of all UPF products. Detection rate increased to 88·4 % of all UPF if ingredient lists were analysed concerning three additional MUP, that is, fibre, dextrose and firming agent. CONCLUSIONS Almost 90 % of all UPF items can be detected by six MUP.
Collapse
Affiliation(s)
- Nathalie Judith Neumann
- Institute of Nutritional Science, Justus-Liebig University of Giessen, Goethestr. 55, Giessen, Hessen35390, Germany
| | - Gerrit Eichner
- Mathematical Institute, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mathias Fasshauer
- Institute of Nutritional Science, Justus-Liebig University of Giessen, Goethestr. 55, Giessen, Hessen35390, Germany
- Center for Sustainable Food Systems, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
24
|
Krawczyk A, Gosiewski T, Zapała B, Kowalska-Duplaga K, Salamon D. Alterations in intestinal Archaea composition in pediatric patients with Crohn's disease based on next-generation sequencing - a pilot study. Gut Microbes 2023; 15:2276806. [PMID: 37955638 PMCID: PMC10653639 DOI: 10.1080/19490976.2023.2276806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Intestinal dysbiosis can lead to the induction of systemic immune-mediated inflammatory diseases, such as Crohn's disease Although archaea are part of the commensal microbiota, they are still one of the least studied microorganisms. The aim of our study was the standardization of the optimal conditions and primers for sequencing of the gut archaeome using Next Generation Sequencing, and evaluation of the differences between the composition of archaea in patients and healthy volunteers, as well as analysis of the changes that occur in the archaeome of patients depending on disease activity. Newly diagnosed patients were characterized by similar archeal profiles at every taxonomic level as in healthy individuals (the dominance of Methanobacteria at the class level, and Methanobrevibacter at the genus level). In turn, in patients previously diagnosed with Crohn's disease (both in active and remission phase), an increased prevalence of Thermoplasmata, Thermoprotei, Halobacteria (at the class level), and Halococcus, Methanospaera or Picrophilus (at the genus level) were observed. Furthermore, we have found a significant correlation between the patient's parameters and the individual class or species of Archaea. Our study confirms changes in archaeal composition in pediatric patients with Crohn's disease, however, only in long-standing disease. At the beginning of the disease, the archeal profile is similar to that of healthy people. However, in the chronic form of the disease, significant differences in the composition of archaeome begin to appear. It seems that some archaea may be a good indicator of the chronicity and activity of Crohn's disease.
Collapse
Affiliation(s)
- A. Krawczyk
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - T. Gosiewski
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - B. Zapała
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Krakow, Poland
- Jagiellonian University Hospital in Krakow, Krakow, Poland
| | - K. Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition,Jagiellonian University Medical College, Krakow, Poland
| | - D. Salamon
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
25
|
Sandall A, Smith L, Svensen E, Whelan K. Emulsifiers in ultra-processed foods in the UK food supply. Public Health Nutr 2023; 26:2256-2270. [PMID: 37732384 DOI: 10.1017/s1368980023002021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Ultra-processed foods (UPF), including those containing food additive emulsifiers, have received research attention due to evidence implicating them in the pathogenesis of certain diseases. The aims of this research were to develop a large-scale, brand-level database of UPF in the UK food supply and to characterise the occurrence and co-occurrence of food additive emulsifiers. DESIGN A database was compiled sampling all products from the food categories contributing to energy intake from UPF in the UK from the National Diet and Nutrition Survey (2008-2014). Every food in these categories were identified from online supermarket provision from the 'big four' supermarkets that dominate the market share in the UK, comprising Tesco, Sainsbury's, Asda and Morrisons. SETTING Major supermarkets in the UK. RESULTS A total of 32 719 food products in the UK supermarket food supply were returned in searches. Of these, 12 844 products were eligible and manually reviewed for the presence of emulsifiers. Emulsifiers were present in 6642 (51·7 %) food products. Emulsifiers were contained in 95·0 % of 'Pastries, buns and cakes', 81·9 % of 'Milk-based drinks', 81·0 % of 'Industrial desserts' and 77·5 % of 'Confectionary'. Fifty-one per cent of all emulsifier-containing foods contained multiple emulsifiers. Across emulsifier-containing foods, there were a median of two emulsifiers (IQR 2) per product. The five most common emulsifiers were lecithin (23·4 % of all products), mono- and diglycerides of fatty acids (14·5 %), diphosphates (11·6 %), and xanthan gum and pectin (8·0 %). CONCLUSIONS Findings from this study are the first to demonstrate the widespread occurrence and co-occurrence of emulsifiers in UPF in the UK food supply.
Collapse
Affiliation(s)
- Alicia Sandall
- King's College London, Department of Nutritional Sciences, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Leanne Smith
- King's College London, Department of Nutritional Sciences, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Erika Svensen
- King's College London, Department of Nutritional Sciences, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Kevin Whelan
- King's College London, Department of Nutritional Sciences, Franklin Wilkins Building, London, SE1 9NH, UK
| |
Collapse
|
26
|
Khatib MA, Saleemani HH, Kurdi NB, Alhibshi HN, Jastaniah MA, Ajabnoor SM. Low Emulsifier Diet in Healthy Female Adults: A Feasibility Study of Nutrition Education and Counseling Intervention. Healthcare (Basel) 2023; 11:2644. [PMID: 37830680 PMCID: PMC10572653 DOI: 10.3390/healthcare11192644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Emulsifiers are food additives commonly found in processed foods to improve texture stabilization and food preservation. Dietary emulsifier intake can potentially damage the gut mucosal lining resulting in chronic inflammation such as Crohn's disease. This study investigates the feasibility of a low-emulsifier diet among healthy female adults, as no previous reports have studied the feasibility of such a diet on healthy participants. A quasi-experimental study for a nutrition education and counseling intervention was conducted over 14 days among healthy Saudi participants aged 18 years and over. Assessment of dietary intake using 3-day food records was conducted at the baseline and 2-week follow-up. Participants attended an online educational session using the Zoom application illustrating instructions for a low-emulsifier diet. Daily exposure to emulsifiers was evaluated and nutrient intake was measured. A total of 30 participants completed the study. At baseline, 38 emulsifiers were identified, with a mean ± SD exposure of 12.23 ± 10.07 emulsifiers consumed per day. A significant reduction in the mean frequency of dietary emulsifier intake was observed at the end of the intervention (12.23 ± 10.07 vs. 6.30 ± 7.59, p < 0.01). However, intake of macronutrients and micronutrients was significantly reduced (p < 0.05). Good adherence to the diet was achieved by 40% of the participants, and 16.66% attained a 50% reduction of emulsifier intake. The study demonstrates that a low-emulsifier diet provided via dietary advice is feasible to follow and tolerable by healthy participants. However, the diet still needs further investigation and assessment of it is nutritional intake and quality before implementing it in patients with inflammatory bowel disease who are at high risk of poor nutritional intake.
Collapse
Affiliation(s)
- Mai A. Khatib
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
27
|
Valicente VM, Peng CH, Pacheco KN, Lin L, Kielb EI, Dawoodani E, Abdollahi A, Mattes RD. Ultraprocessed Foods and Obesity Risk: A Critical Review of Reported Mechanisms. Adv Nutr 2023; 14:718-738. [PMID: 37080461 PMCID: PMC10334162 DOI: 10.1016/j.advnut.2023.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiologic evidence supports a positive association between ultraprocessed food (UPF) consumption and body mass index. This has led to recommendations to avoid UPFs despite very limited evidence establishing causality. Many mechanisms have been proposed, and this review critically aimed to evaluate selected possibilities for specificity, clarity, and consistency related to food choice (i.e., low cost, shelf-life, food packaging, hyperpalatability, and stimulation of hunger/suppression of fullness); food composition (i.e., macronutrients, food texture, added sugar, fat and salt, energy density, low-calorie sweeteners, and additives); and digestive processes (i.e., oral processing/eating rate, gastric emptying time, gastrointestinal transit time, and microbiome). For some purported mechanisms (e.g., fiber content, texture, gastric emptying, and intestinal transit time), data directly contrasting the effects of UPF and non-UPF intake on the indices of appetite, food intake, and adiposity are available and do not support a unique contribution of UPFs. In other instances, data are not available (e.g., microbiome and food additives) or are insufficient (e.g., packaging, food cost, shelf-life, macronutrient intake, and appetite stimulation) to judge the benefits versus the risks of UPF avoidance. There are yet other evoked mechanisms in which the preponderance of evidence indicates ingredients in UPFs actually moderate body weight (e.g., low-calorie sweetener use for weight management; beverage consumption as it dilutes energy density; and higher fat content because it reduces glycemic responses). Because avoidance of UPFs holds potential adverse effects (e.g., reduced diet quality, increased risk of food poisoning, and food wastage), it is imprudent to make recommendations regarding their role in diets before causality and plausible mechanisms have been verified.
Collapse
Affiliation(s)
- Vinicius M Valicente
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Ching-Hsuan Peng
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Kathryn N Pacheco
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Luotao Lin
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Elizabeth I Kielb
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, United States
| | - Elina Dawoodani
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Afsoun Abdollahi
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
28
|
Impact of Diet on Gut Microbiota Composition and Microbiota-Associated Functions in Heart Failure: A Systematic Review of In Vivo Animal Studies. Metabolites 2022; 12:metabo12121271. [PMID: 36557307 PMCID: PMC9787978 DOI: 10.3390/metabo12121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Heart failure (HF) represents a cardiovascular disease with high mortality and morbidity. The latest evidence shows that changes in the composition of the gut microbiota might play a pivotal role in the prevention and management of HF. This systematic review aims at assessing the potential associations between the diet, gut microbiota, and derived metabolites with the outcomes of HF. A systematic literature search was performed up to July 2022 on the PubMed, Web of Science, and Scopus databases. The PRISMA guidelines were followed when possible. The risk of bias was assessed with the SYRCLE and ARRIVE tools. A total of nine pre-clinical studies on animal models, with considerable heterogeneity in dietary interventions, were included. High-fiber/prebiotic diets (n = 4) and a diet rich in polyphenols (n = 1) modified the gut microbiota composition and increased microbial metabolites' activities, linked with an improvement in HF outcomes, such as a reduction in systolic blood pressure, cardiac hypertrophy, and left ventricular thickness. A high-fat diet (n = 2) or a diet rich in choline (n = 2) induced an increase in TMAO and indole derivative production associated with a decrease in cardiac function, systemic endotoxemia, and inflammation and an increase in cardiac fibrosis and cardiac remodeling. Although results are retrieved from animal studies, this systematic review shows the key role of the diet-especially a high-fiber and prebiotic diet-on gut microbial metabolites in improving HF outcomes. Further studies on human cohorts are needed to identify personalized therapeutic dietary interventions to improve cardiometabolic health.
Collapse
|
29
|
Dietary Emulsifiers Exacerbate Food Allergy and Colonic Type 2 Immune Response through Microbiota Modulation. Nutrients 2022; 14:nu14234983. [PMID: 36501013 PMCID: PMC9738911 DOI: 10.3390/nu14234983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The significant increase in food allergy incidence is correlated with dietary changes in modernized countries. Here, we investigated the impact of dietary emulsifiers on food allergy by employing an experimental murine model. Mice were exposed to drinking water containing 1.0% carboxymethylcellulose (CMC) or Polysorbate-80 (P80) for 12 weeks, a treatment that was previously demonstrated to induce significant alterations in microbiota composition and function leading to chronic intestinal inflammation and metabolic abnormalities. Subsequently, the ovalbumin food allergy model was applied and characterized. As a result, we observed that dietary emulsifiers, especially P80, significantly exacerbated food allergy symptoms, with increased OVA-specific IgE induction and accelerated type 2 cytokine expressions, such as IL-4, IL-5, and IL-13, in the colon. Administration of an antibiotic regimen completely reversed the emulsifier-induced exacerbated susceptibility to food allergy, suggesting a critical role played by the intestinal microbiota in food allergy and type 2 immune responses.
Collapse
|