1
|
Heghedűş-Mîndru G, Glevitzky M, Heghedűş-Mîndru RC, Dumitrel GA, Popa M, Glevitzky I, Obiștioiu D, Cocan I, Vică ML. Inhibitory Effects and Composition Analysis of Romanian Propolis: Applications in Organic and Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3355. [PMID: 39683149 DOI: 10.3390/plants13233355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Propolis is a sustainable and environmentally friendly agrochemical of natural origin, a resinous mixture produced by honeybees. It is used as a natural remedy in multiple pathologies., but it is also a natural defense enhancer, a phytostimulator that helps to bind, bloom, and pollinate plants. Propolis is used in organic farming as a phytoprotector and phytostimulator. The present study investigates the main physical-chemical parameters of Romanian propolis, its antifungal activity against five fungal strains (Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Fusarium oxysporum, and Rhizopus stolonifer) and its phyto-inhibitory activity when it is applied on the layer and under the layer for different grain crops (wheat, maize, oats, and barley). Different doses were used-1, 5, and 10 g of propolis powder-and the growth of the plume was monitored for 13 days. The physical-chemical parameters investigated are volatile oils, wax, oxidation index, melting point, dry matter, ash, and resin, and maximum values were obtained for phenols (189.4 mgGAE/g), flavonoids (84.31 mgQE/g), and IC50 (0.086 µg/mL). Propolis demonstrates high antifungal activity against all fungal strains. The results showed that propolis has the best phyto-inhibition potential among the studied grain crops when it is applied on the layer, with the lowest plume growth for maize (14 mm), followed by oats, barley, and lastly wheat (24 mm). Propolis can find increasing application in sustainable and environmentally friendly agriculture and the obtaining of organic food.
Collapse
Affiliation(s)
- Gabriel Heghedűş-Mîndru
- Faculty of Food Engineering, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | | | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania
| | - Maria Popa
- Faculty of Exact Science and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Ioana Glevitzky
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | - Diana Obiștioiu
- Faculty of Food Engineering, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Mihaela Laura Vică
- Department of Cellular and Molecular Biology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Santamaría E, Lizarreta N, Vílchez S, González C, Maestro A. Formation of Microcapsules of Pullulan by Emulsion Template Mechanism: Evaluation as Vitamin C Delivery Systems. Gels 2024; 10:355. [PMID: 38920902 PMCID: PMC11202853 DOI: 10.3390/gels10060355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Pullulan is a polysaccharide that has attracted the attention of scientists in recent times as a former of edible films. On the other hand, its use for the preparation of hydrogels needs more study, as well as the formation of pullulan microcapsules as active ingredient release systems for the food industry. Due to the slow gelation kinetics of pullulan with sodium trimetaphosphate (STMP), capsules cannot be formed through the conventional method of dropping into a solution of the gelling agent, as with other polysaccharides, since the pullulan chains migrate to the medium before the capsules can form by gelation. Pullulan microcapsules have been obtained by using inverse water-in-oil emulsions as templates. The emulsion that acts as a template has been characterized by monitoring its stability and by optical microscopy, and the size of the emulsion droplets has been correlated with the size of the microcapsules obtained, demonstrating that it is a good technique for their production. Although some flocs of droplets form, these remain dispersed during the gelation process and two capsule size distributions are obtained: those of the non-flocculated droplets and the flocculated droplets. The microcapsules have been evaluated as vitamin C release systems, showing zero-order release kinetics for acidic pH and Fickian mechanism for neutral pH. On the other hand, the microcapsules offer good protection of vitamin C against oxidation during an evaluation period of 14 days.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Naroa Lizarreta
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
| | - Susana Vílchez
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carme González
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
4
|
Adame MY, Shi C, Li C, Aziz T, Alharbi M, Cui H, Lin L. Fabrication and characterization of pullulan/tapioca starch-based antibacterial films incorporated with Litsea cubeba essential oil for meat preservation. Int J Biol Macromol 2024; 268:131775. [PMID: 38657922 DOI: 10.1016/j.ijbiomac.2024.131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Active packaging is a novel technology that utilizes active materials to interact with products and the environment, improving food shelf life. The purpose of this work was to fabricate a multifunctional film using Litsea cubeba essential oil (LC-EO) (1 %, 3 %, 5 %, and 7 %) as the active ingredient and pullulan(P)/tapioca starch (TS) as the carrier material. Adding essential oil improves the films properties, such as barrier ability, anti-oxidant, and antibacterial activity. However, tensile strength (TS) and elongation at break (EAB) were slightly reduced from 28.94 MPa to 11.29 MPa and 15.36 % to 12.19 %. The developed PTS3% films showed the best performance in mechanical properties, especially EAB (14.26 %), WVP (3.26 %) and OP (3.13 %), respectively. The inhibitory zone diameters in the agar-well diffusion test were 18.59 mm for Staphylococcus aureus and 17.32 mm for Escherichia coli. Further study was conducted to compare the preservation effects of film with low-density polyethylene bag (LDPE) on chilled beef. Remarkably, PTS3% film decreased the bacterial population in beef meat while maintaining the pH, color, texture, and TBARS levels within an acceptable range for ten days of storage at 4 °C rather than in a low-density polyethylene bag. The outcomes indicated the potential of PTS3% films in food packaging applications.
Collapse
Affiliation(s)
- Mawardi Yusufe Adame
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
5
|
Ferreira LMDMC, Modesto YY, de Souza PDQ, Nascimento FCDA, Pereira RR, Converti A, Lynch DG, Brasil DDSB, da Silva EO, Silva-Júnior JOC, Ribeiro-Costa RM. Characterization, Biocompatibility and Antioxidant Activity of Hydrogels Containing Propolis Extract as an Alternative Treatment in Wound Healing. Pharmaceuticals (Basel) 2024; 17:575. [PMID: 38794145 PMCID: PMC11123975 DOI: 10.3390/ph17050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrogels consist of a network of highly porous polymeric chains with the potential for use as a wound dressing. Propolis is a natural product with several biological properties including anti-inflammatory, antibacterial and antioxidant activities. This study was aimed at synthesizing and characterizing a polyacrylamide/methylcellulose hydrogel containing propolis as an active ingredient, to serve as a wound dressing alternative, for the treatment of skin lesions. The hydrogels were prepared using free radical polymerization, and were characterized using scanning electron microscopy, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, swelling capacity, mechanical and rheological properties, UV-Vis spectroscopy, antioxidant activity by the DPPH, ABTS and FRAP assays and biocompatibility determined in Vero cells and J774 macrophages by the MTT assay. Hydrogels showed a porous and foliaceous structure with a well-defined network, a good ability to absorb water and aqueous solutions simulating body fluids as well as desirable mechanical properties and pseudoplastic behavior. In hydrogels containing 1.0 and 2.5% propolis, the contents of total polyphenols were 24.74 ± 1.71 mg GAE/g and 32.10 ± 1.01 mg GAE/g and those of total flavonoids 8.01 ± 0.99 mg QE/g and 13.81 ± 0.71 mg QE/g, respectively, in addition to good antioxidant activity determined with all three methods used. Therefore, hydrogels containing propolis extract, may serve as a promising alternative wound dressing for the treatment of skin lesions, due to their anti-oxidant properties, low cost and availability.
Collapse
Affiliation(s)
| | - Yuri Yoshioka Modesto
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (Y.Y.M.); (J.O.C.S.-J.)
| | | | | | - Rayanne Rocha Pereira
- Institute of Collective Health, Federal University of Western Pará, Santarém 68035-110, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Pole of Chemical Engineering, via Opera Pia 15, 16145 Genoa, Italy;
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, Jamaica, 237 Old Hope Road, Kinston 6, Jamaica;
| | | | - Edilene Oliveira da Silva
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (P.D.Q.d.S.); (E.O.d.S.)
| | | | - Roseane Maria Ribeiro-Costa
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (Y.Y.M.); (J.O.C.S.-J.)
| |
Collapse
|
6
|
El-Sakhawy M, Salama A, Tohamy HAS. Applications of propolis-based materials in wound healing. Arch Dermatol Res 2023; 316:61. [PMID: 38151671 PMCID: PMC10752841 DOI: 10.1007/s00403-023-02789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
Due to its excellent antiseptic efficacy and antimicrobial properties, propolis has shown attractive advantages in wound dressings. However, an inclusive review of the propolis-based materials as a wound dressing is still lacking. The current short review summarizes the skin wound healing process, relates evaluation parameters, and then reviews the refined propolis-based materials dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and substance delivery. The approaches implemented to achieve these functions are classified and discussed. Furthermore, applications of propolis wound dressing for treating different types of wounds such as heal wounds, burns, and ulcers are presented. The future directions of propolis-based wound dressings for wound healing are further proposed. This review showed that propolis-based materials might be a promising new dressing for wound occlusion and tissue repairing.
Collapse
Affiliation(s)
- Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Hebat-Allah S Tohamy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
7
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Pobiega K, Kot AM, Przybył JL, Synowiec A, Gniewosz M. Comparison of the Chemical Composition and Antioxidant Properties of Propolis from Urban Apiaries. Molecules 2023; 28:6744. [PMID: 37764522 PMCID: PMC10537721 DOI: 10.3390/molecules28186744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bee products from urban apiaries are increasingly used. They are mainly used to promote local apiaries and cities in which they are located. The aim of the study was to compare the chemical composition and antioxidant activity of propolis from 6 Polish apiaries located in cities (Legionowo, Torun, Cracow, Warsaw, Katowice, Lodz). The chemical composition was analyzed using liquid chromatography (HPLC-DAD) and the analysis of antioxidant activity by scavenging free radicals (ABTS and DPPH) and FRAP. The obtained results showed the presence of 24 phenolic compounds in propolis extracts. The tested samples showed differentiation in terms of the content of individual chemical components, however, cinnamic acid and its derivatives were dominant. High antioxidant activity of the tested extracts was demonstrated (ABTS was in the range of 16.80-51.53 mg Te/mL, DPPH was in the range of 7.54-22.13 mg Te/mL, while FRAP reduction was in the range of 10.93-29.55 mg Te/mL). The obtained results compared with literature data on propolis from agricultural areas allow to conclude that propolis samples from both Poland types of areas are similar and can be classified as poplar propolis.
Collapse
Affiliation(s)
- Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| | - Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| | - Jarosław L. Przybył
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| |
Collapse
|
9
|
Wypij M, Rai M, Zemljič LF, Bračič M, Hribernik S, Golińska P. Pullulan-based films impregnated with silver nanoparticles from the Fusarium culmorum strain JTW1 for potential applications in the food industry and medicine. Front Bioeng Biotechnol 2023; 11:1241739. [PMID: 37609118 PMCID: PMC10441246 DOI: 10.3389/fbioe.2023.1241739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.
Collapse
Affiliation(s)
- Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, India
| | | | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Silvo Hribernik
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
10
|
Advances in propolis and propolis functionalized coatings and films for fruits and vegetables preservation. Food Chem 2023; 414:135662. [PMID: 36808021 DOI: 10.1016/j.foodchem.2023.135662] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Propolis, as a natural active substance, is rich in polyphenols, with low toxicity, antioxidant, antifungal and antibacterial properties, which can be applied to the post-harvest preservation of fruits and vegetables. Propolis extracts and propolis functionalized coatings and films have exhibited good freshness in various types of fruits and vegetables as well as fresh-cut vegetables. They are mainly used to prevent water loss after harvesting, to inhibit the infestation of bacteria and fungi after harvesting and to enhance the firmness and apparent quality of fruits and vegetables. Moreover, propolis and propolis functionalized composites have a small or even insignificant effect on the physicochemical parameters of fruits and vegetables. Furthermore, how to cover the special smell of propolis itself so that it does not affect the flavor of fruits and vegetables, and the application of propolis extract in wrapping paper and packaging bag of fruits and vegetables, are worthwhile to further investigate.
Collapse
|
11
|
Perera KY, Jaiswal AK, Jaiswal S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023; 12:2422. [PMID: 37372632 DOI: 10.3390/foods12122422] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. In recent years, numerous biopolymers-such as starch, chitosan, carrageenan, polylactic acid, etc.-have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging. Some of the packaging materials, e.g., cellulose, starch, polylactic acid, and polybutylene adipate terephthalate, are currently used in the packaging industry. The trend of using biopolymers in the packaging industry has increased immensely; therefore, many legislations have been approved by various organizations. This review article describes various challenges and possible solutions associated with food packaging materials. It covers a wide range of biopolymers used in food packaging and the limitations of using them in their pure form. Finally, a SWOT analysis is presented for biopolymers, and the future trends are discussed. Biopolymers are eco-friendly, biodegradable, nontoxic, renewable, and biocompatible alternatives to synthetic packaging materials. Research shows that biopolymer-based packaging materials are of great essence in combined form, and further studies are needed for them to be used as an alternative packaging material.
Collapse
Affiliation(s)
- Kalpani Y Perera
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
12
|
Vică ML, Glevitzky M, Heghedűş-Mîndru RC, Dumitrel GA, Heghedűş-Mîndru G, Popa M, Faur DM, Bâlici Ș, Teodoru CA. Phyto-Inhibitory and Antimicrobial Activity of Brown Propolis from Romania. Antibiotics (Basel) 2023; 12:1015. [PMID: 37370333 DOI: 10.3390/antibiotics12061015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this paper was to study the phyto-inhibitory and antimicrobial activity of brown propolis collected from the counties of four regions in Romania. The main physico-chemical and functional properties of 16 samples of propolis from different landforms of geographical regions were determined. Their antimicrobial activities were established against 5 bacterial strains (Pseudomonas fluorescens, Bacillus subtilis, Bacillus cereus, Escherichia coli, and Proteus mirabilis) and 5 fungal strains (Alternaria alternata, Cladosporium cladosporioides, Fusarium oxysporum, Mucor racemosus, and Aspergillus niger). Simultaneously, the phyto-inhibitory effect of propolis samples on different cereals was highlighted: hexaploid bread wheat (Triticum aestivum), maize (Zea mays L.), oats (Avena sativa L.), and barley (Hordeum vulgare L.). Correlations between the antioxidant activity and total flavonoid and phenol content of the propolis samples were identified, respectively, and the statistical analysis highlighted that the diameter of the inhibition zone was influenced by the strain type (bacterial and fungal) and the geographical regions of propolis. Principal component analysis (PCA) indicated that out of seven principal components, only two exhibited > 0.5. Pearson's correlation coefficient showed a low and moderate positive linear relationship between the diameter of the inhibition zone and the flavonoid and phenol concentration of the propolis samples.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cellular and Molecular Biology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
| | | | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania
| | - Gabriel Heghedűş-Mîndru
- Faculty of Food Engineering, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Maria Popa
- Faculty of Exact Science and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
| | | | - Ștefana Bâlici
- Department of Cellular and Molecular Biology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550025 Sibiu, Romania
| |
Collapse
|
13
|
Ben Miri Y, Nouasri A, Herrera M, Djenane D, Ariño A. Antifungal Activity of Menthol, Eugenol and Their Combination against Aspergillus ochraceus and Aspergillus niger In Vitro and in Stored Cereals. Foods 2023; 12:2108. [PMID: 37297353 PMCID: PMC10252706 DOI: 10.3390/foods12112108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Aspergillus ochraceus and Aspergillus niger are spoilage and mycotoxin-producing fungi that can contaminate agricultural commodities and derived products. In the present study, menthol, eugenol, and their combination (mix 1:1) were tested to determine their contact and fumigation toxicity against the two fungi. Menthol, eugenol, and their mixture significantly reduced mycelial growth and spore germination at concentrations from 300 to 600 µg/mL, and the inhibitory effects showed clear dose dependence. The minimum inhibitory concentration (MIC) values against A. ochraceus were 500 µg/mL (menthol), 400 µg/mL (eugenol), and 300 µg/mL (mix 1:1), while the MIC values for A. niger were 500 µg/mL (menthol), 600 µg/mL (eugenol), and 400 µg/mL (mix 1:1). Additionally, the analyzed compounds exhibited more than 50% protection against A. ochraceus and A. niger by fumigation of stored cereal grains (maize, barley, and rice) in sealed containers. The binary mixture of menthol and eugenol showed synergistic effects against both fungi in both in vitro direct contact and stored grain fumigation trials. The results of the present study provide a scientific basis for the application of a combination of natural antifungals in food preservation.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, P.O. Box 166, M’sila 28000, Algeria;
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, P.O. Box 17, Tizi-Ouzou 15000, Algeria
| | - Ahmed Nouasri
- Laboratory of Bioactive Products and Biomass Valorization Research, ENS Kouba, P.O. Box 92, Vieux-Kouba, Algiers 16308, Algeria;
| | - Marta Herrera
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.H.); (A.A.)
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, P.O. Box 17, Tizi-Ouzou 15000, Algeria
| | - Agustín Ariño
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.H.); (A.A.)
| |
Collapse
|
14
|
Koczoń P, Bartyzel B, Iuliano A, Klensporf-Pawlik D, Kowalska D, Majewska E, Tarnowska K, Zieniuk B, Gruczyńska-Sękowska E. Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polymers. Polymers (Basel) 2022; 14:5551. [PMID: 36559918 PMCID: PMC9783367 DOI: 10.3390/polym14245551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The growing perspective of running out of crude oil followed by increasing prices for all crude oil-based materials, e.g., crude oil-based polymers, which have a huge number of practical applications but are usually neither biodegradable nor environmentally friendly, has resulted in searching for their substitutes-namely, bio-based polymers. Currently, both these types of polymers are used in practice worldwide. Owing to the advantages and disadvantages occurring among plastics with different origin, in this current review data on selected popular crude oil-based and bio-based polymers has been collected in order to compare their practical applications resulting from their composition, chemical structure, and related physical and chemical properties. The main goal is to compare polymers in pairs, which have the same or similar practical applications, regardless of different origin and composition. It has been proven that many crude oil-based polymers can be effectively replaced by bio-based polymers without significant loss of properties that ensure practical applications. Additionally, biopolymers have higher potential than crude oil-based polymers in many modern applications. It is concluded that the future of polymers will belong to bio-based rather than crude oil-based polymers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Bartłomiej Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Anna Iuliano
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Dorota Klensporf-Pawlik
- Department of Food Quality and Safety, Poznan University of Economics and Business, 61-875 Poznan, Poland
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ewa Majewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
15
|
Vică ML, Glevitzky M, Dumitrel GA, Bostan R, Matei HV, Kartalska Y, Popa M. Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics (Basel) 2022; 11:1552. [PMID: 36358206 PMCID: PMC9686581 DOI: 10.3390/antibiotics11111552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2023] Open
Abstract
The purpose of this study was to review the physicochemical characterization of Romanian honey and propolis and their antifungal effect on different strains. As an indicator of environmental pollution, lead exceeded the allowed limits in two study areas. The relationship between the acidity and electrical conductivity of polyfloral honey and the antioxidant activity with the total content of phenolics and flavonoids was investigated. The antifungal activity of 13 polyfloral honey and propolis samples from North-West and Central Romania and 12 samples from Alba County was investigated against six fungal strains: Aspergillus niger, Aspergillus flavus, Candida albicans, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum. All honey and propolis samples exhibited an antifungal effect. The most sensitive strains were P. chrysogenum and R. stolonifer for honey and P. chrysogenum and F. oxisporumn for propolis. A two-way analysis of variance was used to evaluate the correlations between the diameter of the inhibition zones for the strains and the propolis extracts. Statistical analysis demonstrated that the diameter of the inhibition zone was influenced by the strain type and the geographical origin of honey and propolis. Pearson's correlation coefficient shows a significant positive linear relationship between the diameter of the inhibition zone and the flavonoid and phenol concentration of honey and propolis, respectively.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Institute of Legal Medicine Cluj-Napoca, 400006 Cluj-Napoca, Romania
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania
| | - Roxana Bostan
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Horea Vladi Matei
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Institute of Legal Medicine Cluj-Napoca, 400006 Cluj-Napoca, Romania
| | - Yordanka Kartalska
- Department of Microbiology and Ecological Biotechnologies, Agricultural University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Popa
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
| |
Collapse
|