1
|
Zhou ZS, Zu WB, Zhu YY, Wei MZ, Jiang YM, Wang ZJ, Zhao YL, Luo XD. Siegesoxylipin A‒J, previously undescribed phyto-oxylipins inhibition of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci from Sigesbeckia orientalis. PHYTOCHEMISTRY 2025; 231:114355. [PMID: 39662696 DOI: 10.1016/j.phytochem.2024.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ten previously undescribed phyto-oxylipins siegesoxylipin A‒J (1-10), along with four known analogs (11-14), were isolated from the aerial parts of Sigesbeckia orientalis. The elucidation of their structures was accomplished through spectroscopic analyses, base-catalyzed hydrolysis and X-ray diffraction. Moreover, unmethylesterified 4-methylpentanoic acid siegesoxylipins 1, 2, and 4-7 exhibited potent inhibitory bioactivity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) strains with MIC values of 8 μg/mL, in which siegesoxylipin A (1) inhibited bacteria by inducing membrane damage. Siegesoxylipins represent an original class of anti-MRSA and anti-VRE agents with 4-methylpentanoates incorporating fatty acid moieties. This discovery holds promise for the development of new therapeutic strategies to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Wen-Biao Zu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yue-Ming Jiang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Lei S, Luo M, Wang Y. Pin1 as a central node in oncogenic signaling: Mechanistic insights and clinical prospects (Review). Mol Med Rep 2025; 31:80. [PMID: 39886975 PMCID: PMC11795255 DOI: 10.3892/mmr.2025.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Peptidyl‑prolyl cis‑trans isomerase NIMA-interacting 1 (Pin1) is a specific phosphorylated serine/threonine-proline cis-trans isomerase, which is involved in the regulation of a variety of physiological and pathological processes, including cell cycle progression, proliferation and apoptosis. Pin1 plays a key role in tumorigenesis and tumor development and it promotes the proliferation and metastasis of cancer cells by regulating the cell cycle, signaling pathways and the function of tumor suppressors. Upregulated expression of Pin1 is closely associated with a poor prognosis in several types of cancers. Thus, Pin1 is may have potential as a novel potential biomarker for tumor diagnosis and prognosis, as well as a promising anticancer target. The aim of the present review was to discuss the mechanism of Pin1 in tumors and recent research progress in this field.
Collapse
Affiliation(s)
- Shuning Lei
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Min Luo
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
3
|
Qi H, Fu W, Liu Y, Bai J, Wang R, Zou G, Shen H, Cai Y, Luo A. Electron beam irradiation coupled ultrasound-assisted natural deep eutectic solvents extraction: A green and efficient extraction strategy for proanthocyanidin from walnut green husk. Food Chem 2025; 463:141279. [PMID: 39326317 DOI: 10.1016/j.foodchem.2024.141279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Proanthocyanidin (PAC) is recognized as a potent natural antioxidant that prevents various diseases. As societal awareness increases, eco-friendly and efficient natural product extraction technologies are gaining more attention. In this study, an electron beam irradiation (EBI) coupled with ultrasound-assisted natural deep eutectic solvents (NADES) extraction method was developed to enable the green and highly efficient extraction of PAC from walnut green husk (WGH). NADES, prepared with choline chloride and ethylene glycol, demonstrated excellent extraction capacity and storage stability for PAC. Molecular dynamics simulations elucidated the high compatibility between NADES and PAC, attributed mainly to a higher SASA value (207.85 nm2), a greater number of hydrogen bonds (330.99), an extended hydrogen bonding lifetime (4.54 ps), and lower inter-molecular interaction energy. Based on these findings, the optimal conditions (13 kGy EBI, 42 mL/g liquid-solid ratio, 38 °C extraction temperature, 70 min extraction time) resulted in a maximum PAC extraction yield of 56.34 mg/g. Notably, this yield was 32.93 % higher than that observed in samples not treated with EBI and ultrasound-assisted extraction (UAE). Analysis of tissue morphology, extract functional groups and thermal behavior suggested a possible mechanism for the synergistically enhanced PAC extraction by the EBI-NADES-UAE method. Additionally, the PAC extracted using the NADES by the EBI coupled with ultrasound-assisted method exhibited outstanding antioxidant activity (comparable to Vc), digestive enzyme inhibition (IC50: 17-0.61 mg/mL), and anti-glycation capacity (IC50: 86.49 μg/mL). Overall, this work provided a green and efficient strategy for PAC extraction from WGH, elucidated the extraction mechanism and bioactivities, and offered valuable insights for potential industrial applications.
Collapse
Affiliation(s)
- Heting Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wanjia Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yujie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling 712100, China
| | - Ruolin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Guangming Zou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Kang K, Liu X, Li P, Yang S, Lei Y, Lv Y, Hu Y. Exploring Citronella's inhibitory mechanism against Listeria monocytogenes and its utilization in preserving cheese. Food Microbiol 2024; 122:104550. [PMID: 38839218 DOI: 10.1016/j.fm.2024.104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Listeria monocytogenes presents significant risk to human health due to its high resistance and capacity to form toxin-producing biofilms that contaminate food. The objective of this study was to assess the inhibitory effect of citronella aldehyde (CIT) on L. monocytogenes and investigate the underlying mechanism of inhibition. The results indicated that the minimum inhibitory concentration (MIC) and Minimum sterilisation concentration (MBC) of CIT against L. monocytogenes was 2 μL/mL. At this concentration, CIT was able to effectively suppress biofilm formation and reduce metabolic activity. Crystalline violet staining and MTT reaction demonstrated that CIT was able to inhibit biofilm formation and reduce bacterial cell activity. Furthermore, the motility assessment assay revealed that CIT inhibited bacterial swarming and swimming. Scanning electron microscopy (SEM) and laser confocal microscopy (LSCM) observations revealed that CIT had a significant detrimental effect on L. monocytogenes cell structure and biofilm integrity. LSCM also observed that nucleic acids of L. monocytogenes were damaged in the CIT-treated group, along with an increase in bacterial extracellular nucleic acid leakage. The proteomic results also confirmed the ability of CIT to affect the expression of proteins related to processes including metabolism, DNA replication and repair, transcription and biofilm formation in L. monocytogenes. Consistent with the proteomics results are ATPase activity and ATP content of L. monocytogenes were significantly reduced following treatment with various concentrations of CIT. Notably, CIT showed good inhibitory activity against L. monocytogenes on cheese via fumigation at 4 °C.This study establishes a foundation for the potential application of CIT in food safety control.
Collapse
Affiliation(s)
- Kun Kang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xingsai Liu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Peiyuan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuaikun Yang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yang Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yangyong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuansen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
5
|
Zeng C, Sun Y, Lin H, Li Z, Zhang Q, Cai T, Xiang W, Tang J, Yasurin P. D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism. Molecules 2024; 29:3561. [PMID: 39124965 PMCID: PMC11314558 DOI: 10.3390/molecules29153561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry.
Collapse
Affiliation(s)
- Chaoyi Zeng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Yue Sun
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Haoran Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ziyu Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ting Cai
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Patchanee Yasurin
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
| |
Collapse
|
6
|
Kong Y, Yan H, Hu J, Dang Y, Han Z, Tian B, Wang P. Antibacterial Activity and Mechanism of Action of Osthole against Listeria monocytogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10853-10861. [PMID: 38708871 DOI: 10.1021/acs.jafc.3c07931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 μg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.
Collapse
Affiliation(s)
- Yang Kong
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Hui Yan
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jinjing Hu
- Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, P. R. China
| | - Yixuan Dang
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zihao Han
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Bin Tian
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, P. R. China
| |
Collapse
|
7
|
Sandu-Bălan (Tăbăcariu) A, Ifrim IL, Patriciu OI, Ștefănescu IA, Fînaru AL. Walnut By-Products and Elderberry Extracts-Sustainable Alternatives for Human and Plant Health. Molecules 2024; 29:498. [PMID: 38276576 PMCID: PMC10819889 DOI: 10.3390/molecules29020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
A current alternative for sustainable development through green chemistry is the replacement of synthetic compounds with natural ones through the superior capitalization of natural resources, with numerous applications in different fields. The benefits of walnuts (Juglans regia L.) and elderberries (Sambucus nigra L.) have been known since ancient times, due to the presence of phytochemicals such as flavonoids, polyphenols, carotenoids, alkaloids, nitrogen-containing compounds, tannins, steroids, anthocyanins, etc. These active compounds have multiple biological activities for human health, including benefits that are antibacterial, antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, antihypertensive, neuroprotective, etc. Like other medicinal plants, the walnut and the elderberry possess important phytosanitary properties (antibacterial, antifungal, and insecticidal) and their extracts can also be used as environmentally safe biopesticides, with the result that they constitute a viable and cheap alternative to environmentally harmful synthetic products. During recent years, walnut by-products and elderberries have attracted the attention of researchers, and investigations have focused on the species' valuable constituents and active properties. Comparing the information from the literature regarding the phytochemical profile and biological activities, it is highlighted that, apart from the predominant specific compounds, the walnut and the elderberry have common bioactive compounds, which come from six classes (phenols and derivatives, flavonoids, hydroxycinnamic acids, tannins, triterpenoids, and phytosteroids), and act on the same microorganisms. From this perspective, the aim of this review is to provide an overview of the bioactive compounds present in the different constitutive parts of walnut by-products and elderberries, which present a specific or common activity related to human health and the protection of agricultural crops in the context of sustainable development.
Collapse
Affiliation(s)
- Anca Sandu-Bălan (Tăbăcariu)
- Doctoral School in Environmental Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania;
| | - Irina-Loredana Ifrim
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| | - Oana-Irina Patriciu
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| | - Ioana-Adriana Ștefănescu
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| | - Adriana-Luminița Fînaru
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania (A.-L.F.)
| |
Collapse
|
8
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|