1
|
Yang Y, Liu G, Xu H, Zhang Z, Tao M, Gu Z. Effect of glyceryl monopalmitate on the gelatinization, rheological and retrogradation properties of Japonica rice starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1882-1893. [PMID: 39450653 DOI: 10.1002/jsfa.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Starch-based food is easy to retrograde during cold storage after gelatinization, which leads to quality fission and a relatively short shelf life. Some lipids can effectively enhance the storage stability of starch gels by the formation of starch-lipid complexes. The present study aimed to investigate the effects of glyceryl monopalmitate (GMP) on gelatinization, rheological and retrogradation properties of Japonica rice starch (JS) at different conditions and to analyze the correlation between the physical-chemical properties and structural characteristics of the JS-GMP complex. RESULTS The addition of GMP to JS could retard the process of starch gelatinization through forming JS-GMP complexes. The resulting JS-GMP pastes were typical pseudoplastic fluids with shear thinning, and their solid-like properties were prominent (tan δ < 1). In addition, the retrogradation of JS-GMP complex was more inhibited during storage at -18 than at 4 °C. The added amount of GMP was negatively and highly associated with the minimum viscosity, consistency coefficient, hardness and elasticity, whereas it was positively and highly correlated with the breakdown value, fluid characteristic index and relative crystallinity. The relative crystallinity of JS was affected by GMP in an approximate dose-dependent manner. CONCLUSION The addition of GMP can influence the gelatinization properties, rheological properties and retrogradation characteristics of JS, and the formation of JS-GMP complex could improve the quality and storage stability of starch gel, which provides ideas for the quality control of starch-based food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuexi Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Guoqiang Liu
- Medical College, Jiaxing University, Jiaxing, China
| | - Hongmei Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zihao Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Tao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhenyu Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
2
|
Ozdemir-Orhan N, Eroglu Z, Omac B. Changes in quality characteristics and inactivation of Salmonella in cake, including oleogel used as a fat replacer, baked with two different methods. J Food Sci 2024; 89:9595-9607. [PMID: 39581602 DOI: 10.1111/1750-3841.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
This is the first study to assess the impact of substitution of shortening (50%) with sunflower-beeswax oleogel in cake formulations on the inactivation kinetics of Salmonella spp. and the quality attributes of cakes baked in conventional (CO) and microwave (MWO) ovens. Four distinct cake samples were examined in the study: Cake samples containing oleogel prepared in two different ovens (Oleo-Cake-CO and Oleo-Cake-MWO) and control cake samples baked in two different ovens (Cont-Cake-CO and Cont-Cake-MWO). The control-batter and oleogel-batter demonstrated shear thinning behavior (pseudoplastic, n < 1), with a good fit to the Power Law model, but viscosity and viscoelastic moduli decreased when the oleogel was used in place of shortening in cake recipes. In addition, the Cont-Cake-MWO had the greatest special volume value (2.31 ± 0.04 mL/g), whereas the Oleo-Cake-CO had the lowest (1.65 ± 0.02 mL/g) (p < 0.05). Furthermore, compared to the samples baked with CO, lower water activity and moisture values (p < 0.05) were observed in the samples baked in MWO due to their higher cooking loss values (p < 0.05). In all baking techniques, the addition of oleogel to the cake formula, used as a fat substitute, resulted in higher values for cohesiveness, hardness, springiness, and chewiness (p < 0.05). As a result, the inactivation of Salmonella in cakes slightly reduced with using oleogel as a fat substitute (p > 0.05), whereas it affected some quality properties of cakes baked with both heat treatments.
Collapse
Affiliation(s)
- Necla Ozdemir-Orhan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bitlis Eren University, Bitlis, Turkey
| | - Zeynep Eroglu
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Munzur University, Tunceli, Turkey
| | - Basri Omac
- Department of Food Processing, Munzur University, Tunceli, Turkey
| |
Collapse
|
3
|
Gu Y, Xu W, Guo Y, Gao Y, Zhu J. Development and characterization of tilapia skin collagen-inulin oleogel as the potential fat substitute in beef patty formulations. Int J Biol Macromol 2024; 280:135785. [PMID: 39304057 DOI: 10.1016/j.ijbiomac.2024.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The effects of inulin addition, olive oil content, and ultrasonic treatment on the rheological, texture, and structural properties of collagen-based oleogels were investigated in this study. Furthermore, the fat substitution ability of the oleogel in low-fat beef patties was evaluated. Initially, a uniform and dense network cross-linked structure was found when the ratio of collagen to inulin complex was 1:5. The oleogel sample exhibited good stability and oil binding ability with an additional amount of 50 % olive oil. Ultrasonic treatment improved the stability of the oleogel structure in all samples. Additionally, the addition of inulin reduced cooking loss in beef patties. Beef patties prepared at a 50 % fat substitution level showed physical properties that were the least different from those of pure adipose tissue (control group), which could significantly reduce the content of saturated fatty acids and improve the storage stability of beef patties. This study provided guidance for the application of collagen-inulin oleogel in food processing.
Collapse
Affiliation(s)
- Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Weiwei Xu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanjie Guo
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China
| | - Yongfang Gao
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Professional Graduate Program of Food Engineering, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
4
|
Wei X, Xia R, Wei C, Shang L, An J, Deng L. The Impact of Beeswax and Glycerol Monolaurate on Camellia Oil Oleogel's Formulation and Application in Food Products. Molecules 2024; 29:3192. [PMID: 38999144 PMCID: PMC11243740 DOI: 10.3390/molecules29133192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
This study assessed the nutritional profile of camellia oil through its fatty acid composition, highlighting its high oleic acid content (81.4%), followed by linoleic (7.99%) and palmitic acids (7.74%), demonstrating its excellence as an edible oil source. The impact of beeswax (BW) and glycerol monolaurate (GML) on camellia oil oleogels was investigated, revealing that increasing BW or GML concentrations enhanced hardness and springiness, with 10% BW oleogel exhibiting the highest hardness and springiness. FTIR results suggested that the structure of the oleogels was formed by interactions between molecules without altering the chemical composition. In biscuits, 10% BW oleogel provided superior crispness, expansion ratio, texture, and taste, whereas GML imparted a distinct odor. In sausages, no significant differences were observed in color, water retention, and pH between the control and replacement groups; however, the BW group scored higher than the GML group in the sensory evaluation. The findings suggest that the BW oleogel is an effective fat substitute in biscuits and sausages, promoting the application of camellia oil in food products.
Collapse
Affiliation(s)
- Xingchen Wei
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Ronghui Xia
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Chenxi Wei
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Longchen Shang
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China;
| | - Jianhui An
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (X.W.); (R.X.); (C.W.)
| | - Lingli Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China;
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
5
|
Tanislav AE, Cornea AA, Radu ED, Țibulcă D, Mureșan V, Mudura E. Candelilla Wax and Glycerol Monostearate-Based Oleogels as Animal Fat Substitutes in Bologna Sausages. Gels 2024; 10:399. [PMID: 38920945 PMCID: PMC11203137 DOI: 10.3390/gels10060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to produce Bologna sausages rich in unsaturated fatty acids and to evaluate this replacement on the structural characteristics. For the purpose of a comparative analysis, three different types of sausages were produced, distinct only in the type of fat used: I. sausages obtained with pork backfat (PBF), II. sausages produced with oleogel formed from refined sunflower oil and glycerol monostearate (GM_OG), and III. with candelilla wax oleogel (CW_OG). The meat composition was also analyzed to better understand the process in the dynamics and the finished products were analyzed both uncooked and cooked. The enhanced oil-binding capacity of oleogels suggests their potential value as substitutes for saturated fats (>99%). In terms of meat composition textural analysis, the highest hardness value was registered for PBF_C of 25.23 N, followed by a CW_OG_C of 13.08 N and a GM_OG_C of 12.27 N. However, adhesiveness, cohesiveness, springiness index, and gumminess showed similar values between samples. Reformulation of products with oleogels as a fat source abundant in mono- and polyunsaturated fatty acids resulted in uncooked products exhibiting reduced hardness values of 49.01 N (CW_OG_US) and 40.51 N (GM_OG_US), compared to 65.03 N (PBF_US). Color results of the cross-section color can indicate the potential for consumer acceptance due to the reduced color differences between the conventional and oleogel samples.
Collapse
Affiliation(s)
| | | | | | | | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăștur Street, 400372 Cluj-Napoca, Romania; (A.E.T.); (A.A.C.); (E.D.R.); (D.Ț.); (E.M.)
| | | |
Collapse
|
6
|
Qiu H, Zhang H, Eun JB. Oleogel classification, physicochemical characterization methods, and typical cases of application in food: a review. Food Sci Biotechnol 2024; 33:1273-1293. [PMID: 38585566 PMCID: PMC10992539 DOI: 10.1007/s10068-023-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
The harmful effects of trans and saturated fatty acids have attracted worldwide attention. Edible oleogels, which can structure liquid oils, are promising healthy alternatives to traditional fats. Active research on oleogels is focused on the interaction between unsaturated oils with different fatty acid compositions and low molecular weight or polymer oleogels. The unique network structure inside oleogels has facilitated their application in candies, spreads, meat, and other products. However, the micro- and macro-properties, as well as the functional properties of oleogels vary by preparation method and the system composition. This review discusses the characteristics of oleogels, serving as a reference for the application of oleogels in food products. Specifically, it (i) classifies oleogels and explains the influence of gelling factors on their gelation, (ii) describes the methods for measuring the physicochemical properties of oleogels, and (iii) discusses the current applications of oleogels in food products.
Collapse
Affiliation(s)
- Hongtu Qiu
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
- Department of School of Life Science and Bioengineering, Jining University, No.1 Xin tan Road, JiNing, 273155 China
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Hua Zhang
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
7
|
Ropciuc S, Dranca F, Oroian MA, Leahu A, Prisacaru AE, Spinei M, Codină GG. Characterization of Beeswax and Rice Bran Wax Oleogels Based on Different Types of Vegetable Oils and Their Impact on Wheat Flour Dough Technological Behavior during Bun Making. Gels 2024; 10:194. [PMID: 38534612 DOI: 10.3390/gels10030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Five varieties of vegetable oil underwent oleogelation with two types of wax as follows: beeswax (BW) and rice bran wax (RW). The oleogels were analyzed for their physicochemical, thermal, and textural characteristics. The oleogels were used in the bun dough recipe at a percentage level of 5%, and the textural and rheological properties of the oleogel doughs were analyzed using dynamic and empirical rheology devices such as the Haake rheometer, the Rheofermentometer, and Mixolab. The thermal properties of beeswax oleogels showed a melting peak at a lower temperature for all the oils used compared with that of the oleogels containing rice bran wax. Texturally, for both waxes, as the percentage of wax increased, the firmness of the oleogels increased proportionally, which indicates better technological characteristics for the food industry. The effect of the addition of oleogels on the viscoelastic properties of the dough was measured as a function of temperature. All dough samples showed higher values for G' (storage modulus) than those of G″ (loss modulus) in the temperature range of 20-90 °C, suggesting a solid, elastic-like behavior of all dough samples with the addition of oleogels. The influence of the beeswax and rice bran oleogels based on different types of vegetable oils on the thermo-mechanical properties of wheat flour dough indicated that the addition of oleogels in dough recipes generally led to higher dough stability and lower values for the dough development time and those related to the dough's starch characteristics. Therefore, the addition of oleogels in dough recipes inhibits the starch gelatinization process and increases the shelf life of bakery products.
Collapse
Affiliation(s)
- Sorina Ropciuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Florina Dranca
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Adrian Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Ana Leahu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Ancuţa Elena Prisacaru
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mariana Spinei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | | |
Collapse
|
8
|
Hong SJ, Shin GH, Kim JT. Fabrication and Application of Turmeric Extract-Incorporated Oleogels Structured with Xanthan Gum and Soy Lecithin by Emulsion Template. Gels 2024; 10:84. [PMID: 38275858 PMCID: PMC10815647 DOI: 10.3390/gels10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Turmeric extract (TE)-loaded oleogels (TE-OG) was fabricated by an emulsion template technique using xanthan gum (XG) and soy lecithin (SL) as oleogelators. The formulation for TE-OG was optimized using 0.32% XG, 1.2% SL, and 1.0% TE. The optimized TE-OG had a minimal particle size of 810.23 ± 10.68 nm as measured by the dynamic light scattering (DLS) method, and a high encapsulation efficiency (EE) of 96.62 ± 0.56%. Additionally, the optimized TE-OG exhibited a favorable zeta potential of -27.73 ± 0.44 mV, indicating the good stability of the TE-OG due to the electrostatic repulsion between particles. TE-OG formulated with 0.32% XG and 1.2% SL was subjected to frequency sweep testing to evaluate its solid-like rheological behavior. The oil-binding capacity (OBC) of TE-OG was consistently maintained above 99.99%. In vitro digestion of TE-OG demonstrated the potential of the emulsion template for controlled release, with less than 20% of the encapsulated curcumin being released in simulated gastric fluid (SGF), whereas nearly 70% was released in the simulated intestinal fluid (SIF). Moreover, TE-OG affected the rapid release of free fatty acids (FFAs), which have a positive effect on the digestion of triacylglycerols found in soybean oil (SO). TE-OG was further used as an alternative to commercial butter to produce pound cakes, and their rheological properties were compared to those of the pound cake prepared using commercial butter. The pound cake prepared using TE-OG showed a noticeable decrease in hardness from 10.08 ± 1.39 N to 7.88 ± 0.68 N and increased porosity, demonstrating the inherent capability of TE-OG to enhance the overall quality standards of bakery products.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea;
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Marra F, Lavorgna A, Incarnato L, Malvano F, Albanese D. Optimization of Hazelnut Spread Based on Total or Partial Substitution of Palm Oil. Foods 2023; 12:3122. [PMID: 37628121 PMCID: PMC10453538 DOI: 10.3390/foods12163122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Palm oil is widely used in the manufacturing of hazelnut-based spreads due to its unique fatty acid and triacylglycerol profile and, thus, its crystallization behaviour, which makes it suitable for use in fat-based spreadable products. An interesting solution that enables the replacement of palm oil is given by oleogels made with high nutritional quality oil. In this study, the influence of the replacement of palm oil with different glycerol monostearate/olive oil-based oleogels, as well as the influence of the different amounts of GMS employed in oleogel preparation, on the oil binding capacity, spreadability, and rheological and sensory parameters of hazelnut cocoa spreads was investigated. A design of experiment (DoE) approach, with the adoption of the D-optimal design, was used to plan the cocoa hazelnut spread formulations, with the aim being to identify the optimal formulation with desirable quality parameters in terms of Casson's viscosity, spreadability, and oil binding capacity. The resulting optimized formulation was identified in a spread characterized by a total replacement of palm oil with an oleogel made of 95% olive oil and 5% GMS.
Collapse
Affiliation(s)
| | | | | | - Francesca Malvano
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; (F.M.); (A.L.); (L.I.); (D.A.)
| | | |
Collapse
|
10
|
Perța-Crișan S, Ursachi CȘ, Chereji BD, Tolan I, Munteanu FD. Food-Grade Oleogels: Trends in Analysis, Characterization, and Applicability. Gels 2023; 9:gels9050386. [PMID: 37232978 DOI: 10.3390/gels9050386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Currently, a large number of scientific articles can be found in the research literature in the field focusing on the use of oleogels for food formulation to improve their nutritional properties. The present review focuses on the most representative food-grade oleogels, highlighting current trends in terms of the most suitable methods of analysis and characterization, as well as trends in their application as substitutes for saturated and trans fats in foods. For this purpose, the physicochemical properties, structure, and composition of some oleogelators are primarily discussed, along with the adequacy of oleogel incorporation for use in edible products. Analysis and characterization of oleogels by different methods are important in the formulation of innovative foods, and therefore, this review discusses the most recent published results regarding their microstructure, rheological and textural properties, and oxidative stability. Last but not least, issues related to the sensory properties of oleogel-based foods are discussed, highlighting also the consumer acceptability of some of them.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Claudiu-Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Bianca-Denisa Chereji
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Iolanda Tolan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| |
Collapse
|
11
|
Botella-Martínez C, Pérez-Álvarez JÁ, Sayas-Barberá E, Navarro Rodríguez de Vera C, Fernández-López J, Viuda-Martos M. Healthier Oils: A New Scope in the Development of Functional Meat and Dairy Products: A Review. Biomolecules 2023; 13:biom13050778. [PMID: 37238648 DOI: 10.3390/biom13050778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present day, it has been widely established that a high intake of animal fat that contains a high content of saturated fatty acids may cause several life-threatening diseases, including obesity, diabetes-type 2, cardiovascular diseases, as well as several types of cancer. In this context, a great number of health organizations and government agencies have launched campaigns to reduce the saturated fat content in foods, which has prompted the food industry, which is no stranger to this problem, to start working to develop foods with a lower fat content or with a different fatty acid profile. Nevertheless, this is not an easy task due to the fact that saturated fat plays a very important role in food processing and in the sensorial perception of foods. Actually, the best way to replace saturated fat is with the use of structured vegetable or marine oils. The main strategies for structuring oils include pre-emulsification, microencapsulation, the development of gelled emulsions, and the development of oleogels. This review will examine the current literature on the different (i) healthier oils and (ii) strategies that will be potentially used by the food industry to reduce or replace the fat content in several food products.
Collapse
Affiliation(s)
- Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Casilda Navarro Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
12
|
da Silva RC, Ferdaus MJ, Foguel A, da Silva TLT. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023; 9:gels9030180. [PMID: 36975629 PMCID: PMC10048032 DOI: 10.3390/gels9030180] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fats and oils in food give them flavor and texture while promoting satiety. Despite the recommendation to consume predominantly unsaturated lipid sources, its liquid behavior at room temperature makes many industrial applications impossible. Oleogel is a relatively new technology applied as a total or partial replacement for conventional fats directly related to cardiovascular diseases (CVD) and inflammatory processes. Some of the complications in developing oleogels for the food industry are finding structuring agents Generally Recognized as Safe (GRAS), viable economically, and that do not compromise the oleogel palatability; thus, many studies have shown the different possibilities of applications of oleogel in food products. This review presents applied oleogels in foods and recent proposals to circumvent some disadvantages, as reaching consumer demand for healthier products using an easy-to-use and low-cost material can be intriguing for the food industry.
Collapse
Affiliation(s)
- Roberta Claro da Silva
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Md. Jannatul Ferdaus
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aline Foguel
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | |
Collapse
|