1
|
Zhuang Z, Wan G, Lu X, Xie L, Yu T, Tang H. Metabolic engineering for single-cell protein production from renewable feedstocks and its applications. ADVANCED BIOTECHNOLOGY 2024; 2:35. [PMID: 39883267 PMCID: PMC11709146 DOI: 10.1007/s44307-024-00042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 01/31/2025]
Abstract
Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements. SCP offers several advantages over the traditional animal and plant proteins. These include shorter production cycles, the use of diverse raw material sources, high energy efficiency, and minimal environmental impact. This review is primarily concerned with the microbial species employed in SCP production, utilization of non-food renewable materials as a source of feedstock, and application of rational and non-rational metabolic engineering strategies to increase SCP biomass and protein content. Moreover, the current applications, production shortages, and safety concerns associated with SCP are discussed.
Collapse
Affiliation(s)
- Zhoukang Zhuang
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guangyu Wan
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaocong Lu
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Linhai Xie
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongting Tang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Sun D, Hou D, Zheng Y, Xiang W, Huang Y, Wu H, Zou J. Multi-Omics Reveals the Effects of Spirulina platensis Powder Replacement of Fish Meal on Intestinal Metabolism and Stress in Zig-Zag Eel ( Mastacembelus armatus). Antioxidants (Basel) 2024; 13:851. [PMID: 39061919 PMCID: PMC11273650 DOI: 10.3390/antiox13070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The booming aquaculture industry has created a strong demand for fishmeal and increased environmental pressures. Spirulina, as a potential alternative to fishmeal, has been shown to have growth-promoting and animal health-enhancing properties. In this study, 600 large spiny loaches, divided into five experimental groups, F0, F1, F2, F3, and F4, were reared for 10 weeks using Spirulina platensis powder (SPP) as a substitute for 0%, 5%, 10%, 15%, and 20% of fishmeal, respectively. The results of intestinal physiological indexes showed that superoxide dismutase was lower than F0 in all treatment groups, and the activity of F3 was significantly lower than F0 (p < 0.05). The activity of malondialdehyde was significantly higher than that of F0 in all groups except F3 (p < 0.05). The addition of SPP also led to a decrease in the activity of acid phosphatase in the intestine, which was significantly lower in all treatment groups compared to the F0 group (p < 0.05). The results of serum physiology showed that the activity of superoxide dismutase in serum gradually increased with the increase in the percentage of SPP addition, and the F3 group produced a significant difference from the F0 group (p < 0.05). The transcriptomics results showed that DEGs in the low percentage substitution group (<15%) were mostly enriched in metabolism-related pathways, such as bile secretion; DEGs in the high percentage substitution group (>15%) were mostly enriched in inflammation-related pathways, such as complement p and coagulation cascades. Metabolomics confirmed that nicotinate and nicotinamide metabolism and glycerophospholipid metabolism were the two pathways that were significantly enriched in the treatment groups of fishmeal replacement by SPP. The present study demonstrated that a low percentage (<15%) of fishmeal replacement by SPP in feed mobilized MA digestive metabolism, whereas a high percentage (>15%) of replacement induced intestinal stress. Considering the health and farm efficiency aspects, the proportion of SPP in feed formulation for MA should be less than 15%.
Collapse
Affiliation(s)
- Di Sun
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Dongqiang Hou
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Yushun Zheng
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Haizhu District, Guangzhou 510301, China;
| | - Yingshi Huang
- Faculty of Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Haizhu District, Guangzhou 510301, China;
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| |
Collapse
|
3
|
Niazifar M, Besharati M, Jabbar M, Ghazanfar S, Asad M, Palangi V, Eseceli H, Lackner M. Slow-release non-protein nitrogen sources in animal nutrition: A review. Heliyon 2024; 10:e33752. [PMID: 39027513 PMCID: PMC11255499 DOI: 10.1016/j.heliyon.2024.e33752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Today, feeding protein supply according to need in high-yielding lactating cows has become a big challenge. Protein is the most costly bulk constituent of animal diet, and the price of protein sources is increasing steadily, which is different from milk price rising. Therefore, one way for farmers to reduce feed costs is to reduce dietary protein share. Ruminants obtain their amino acids from 2 sources: amino acids from ruminally undegraded protein (RUP) and microbial protein synthesized in the rumen. A key goal in ruminant nutrition strategies, maximizing the use of rumen degradable protein (RDP), is through its efficient conversion into microbial protein. Urea is a supplement and a possible source of non-protein nitrogen (NPN) in ruminants' diets which meets bacteria's ammonia needs. Rumen ammonia sources include protein, peptides, amino acids, and other nitrogen-bearing compounds. As urea, uric acid, nitrate, and possibly nucleic acid are rapidly converted to ammonia, the ammonia reservoir indicates that the ruminal metabolism of ammonia is relatively small. Bacteria in the rumen can obtain between 40 and 95 percent of their nitrogen demand from ammonia, depending on their diet. Using NPN (non-protein nitrogen) as a reliable nitrogen source for ruminants was recognized over 100 years ago. Urea is quickly released in the rumen, its use in the diet is limited due to ammonia toxicity. So, the solution to this problem is that the product in nitrogen release rate from urea changes according to the digestion of fibers in the rumen. In the past, several slow-release products were made and evaluated. Slow-release urea (SRU) sources will also affect microbial growth and livestock performance compared to conventional plant protein sources. Acceptance of SRU sources, depending on their price compared to conventional plant protein ingredients is feasible. Studies has shown that the use of slow-release urea did not have a negative effect on digestibility, rumen parameters, milk production and livestock performance. Single-cell protein (SCP) is an emerging alternative protein source, currently being mainly studied for chicken and aquatic species.Finally, it is concluded that slow release urea can be used in feeding ruminants without any side effects.
Collapse
Affiliation(s)
- Masoumeh Niazifar
- Department of Animal Science, Ahar Faculty of Agriculture and Ntural Resources, University of Tabriz, Iran
| | - Maghsoud Besharati
- Department of Animal Science, Ahar Faculty of Agriculture and Ntural Resources, University of Tabriz, Iran
| | - Muhammad Jabbar
- Faculty of Biosciences, Department of Zoology, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Pakistan
| | - Shakira Ghazanfar
- National Institute of Genomics and Advanced Biotechnology, Pakistan Agricultural Research Council Islamabad, Pakistan
| | - Muhammad Asad
- Department of Zoology, Division of Science and Technology, University of Education Lahore, Punjab, Pakistan
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, Izmir, Turkiye
| | - Hüseyin Eseceli
- Department of Nutrition Sciences, Faculty of Health Sciences, Bandirma Onyedi Eylul University, TR, 10200, Bandirma, Balikesir, Turkiye
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200, Vienna, Austria
| |
Collapse
|
4
|
Wang Z, Liao S, Huang Z, Wang J, Wang Y, Yu W, Huang X, Luo M, Lin H, Zhou C. Dietary Effects of Fermented Cottonseed Meal Substituting Fishmeal on the Growth, Biochemical Indexes, Antioxidant Capacity, and Muscle Quality of Juvenile Golden Pompano ( Trachinotus ovatus). AQUACULTURE NUTRITION 2024; 2024:9972395. [PMID: 39555570 PMCID: PMC11208100 DOI: 10.1155/2024/9972395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/09/2024] [Indexed: 11/19/2024]
Abstract
This study investigated the effects of the dietary replacing fishmeal (FM) with fermented cottonseed meal (FCSM) on growth performance, body coloration, serum biochemistry, muscle quality, and liver antioxidant capacity of juvenile golden pompano (Trachinotus ovatus). Fish were fed with five experimental diets (0 (FM), 12.5% (CSM12.5), 25% (CSM25), 50% (CSM50), and 100% (CSM100) replacement levels) for 8 weeks. The weight gain rate (WGR), specific growth rate (SGR), and condition factor (CF) in fish fed with CSM25 were significantly higher than those of the FM (P < 0.05). ALT, GLU, TG, TC, and LDL of fish fed with CSM100 diet were significantly higher than those in FM (P < 0.05). No significant difference was observed in SOD, CAT, and MDA among all treatments (P > 0.05). The relative gene expression of Nrf2 of fish fed with CSM25 diet was higher than that of the other groups (P < 0.05). The relative gene expression of Keap-1 of fish fed with CSM25 diet was lower than those in FM (P < 0.05). In addition, the replacement of a high proportion of FM with FCSM negatively affect the liver antioxidant capacity of fish. With dietary replacement of FM with FCSM increasing 0%-25%, the relative expressions of GH, myf5, and MSTN were significantly upregulated (P > 0.05). Based on these results, we recommend that of FCSM in the diet of golden pompano, whereas the optimal level of FCSM should be carefully evaluated. In conclusion, the optimum level of dietary replacing FM with FCSM in T. ovatus diet was 24.74%-29.38% based on SGR and WGR.
Collapse
Affiliation(s)
- Zhanzhan Wang
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- School of FisheriesTianjin Agricultural University, Tianjin 300384, China
| | - Shuling Liao
- School of Life ScienceGuangzhou University, Guangzhou 510006, China
| | - Zhong Huang
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jun Wang
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yun Wang
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xiaolin Huang
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Maoyan Luo
- School of Life ScienceGuangzhou University, Guangzhou 510006, China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chuanpeng Zhou
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
5
|
Aidoo R, Kwofie EM, Adewale P, Lam E, Ngadi M. Designing sustainable circular bioeconomy solutions for the pulse industry: The case of crude pea starch as a substrate for single cell protein production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169029. [PMID: 38056673 DOI: 10.1016/j.scitotenv.2023.169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Valorization of crude pea starch has become a key focus in the pea industry's sustainability pursuit. This study aimed to explore the circularity potential of crude pea starch as a nutrient-dense substrate for the solid-state cultivation of yeast (Saccharomyces cerevisiae) Single Cell Protein (SCP). Following the ISO 2006:14040/44 standard, a life cycle assessment (LCA) was performed to ascertain the environmental performance and operational dynamics of baseline and scenario pea starch-based yeast SCP process designs and identify optimal design considerations. Results demonstrated a higher relative contribution to the toxicity categories, with a relatively less contribution to global warming and land use. The distribution and media enrichment processes were identified as the hotspots, contributing about 32-55 % and 40-56 % to global warming and land use, respectively. Generally, train and air freight were more sustainable than lorry freight, respective of mileage and mass. Regarding system alteration, eliminating the media enrichment process could offset about 26 % of land footprint, with a similar trend for most impact categories. Process benchmarking showed up to a 3-fold reduction in global warming impacts relative to soybean meal, and about 71 % offset relative to fishmeal. Consequential LCA showed a general sustainability preference for substituting the aquacultural feeds with pea starch-based SCP, with a stronger emphasis on fishmeal substitution. Overall, these findings highlight the potential of the proposed SCP design as a sustainable upcycling solution with substitutionary potentials for conventional food and feeds, recommending further exploration in value and wealth creation.
Collapse
Affiliation(s)
- Raphael Aidoo
- Bioresource Engineering Department, McGill University, 21 111, Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ebenezer M Kwofie
- Bioresource Engineering Department, McGill University, 21 111, Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Peter Adewale
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada; Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Michael Ngadi
- Bioresource Engineering Department, McGill University, 21 111, Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
6
|
Liu K, Huang S, Zhang L, Xiong Y, Wang X, Bao Y, Li D, Li J. Efficient production of single cell protein from biogas slurry using screened alkali-salt-tolerant Debaryomyces hansenii. BIORESOURCE TECHNOLOGY 2024; 393:130119. [PMID: 38040306 DOI: 10.1016/j.biortech.2023.130119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Production of single cell protein (SCP) by recovering ammonia nitrogen from biogas slurry shows great potential against protein scarcity and unsustainable production of plant and animal proteins. Herein, a high-alkali-salt-tolerant yeast strain, Debaryomyces hansenii JL8-0, was isolated and demonstrated for high-efficient SCP production. This strain grew optimally at pH 8.50 and 2500 mg/L NH4+-N, and it could efficiently utilize acetate as the additional carbon source. Under optimal conditions, SCP biomass of 32.21 g/L and productivity of 0.32 g/L·h-1 were obtained in fed-batch fermentation. Remarkably, nearly complete (97.40 %) ammonia nitrogen from biogas slurry was recovered, probably due to its high affinity for NH4+-N. Altogether, this strain showed advantages in terms of cell biomass titer, productivity, and yield. A cultivation strategy was proposed by co-culturing D. hansenii with other compatible yeast strains to achieve high-efficient SCP production from biogas slurry, which could be a promising alternative technology for biogas slurry treatment.
Collapse
Affiliation(s)
- Keyun Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Huang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yingjie Xiong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoyan Wang
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010050, China
| | - Yali Bao
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010050, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabao Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Otero P, Echave J, Chamorro F, Soria-Lopez A, Cassani L, Simal-Gandara J, Prieto MA, Fraga-Corral M. Challenges in the Application of Circular Economy Models to Agricultural By-Products: Pesticides in Spain as a Case Study. Foods 2023; 12:3054. [PMID: 37628052 PMCID: PMC10453233 DOI: 10.3390/foods12163054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The income and residue production from agriculture has a strong impact in Spain. A circular economy and a bioeconomy are two alternative sustainable models that include the revalorization of agri-food by-products to recover healthy biomolecules. However, most crops are conventional, implying the use of pesticides. Hence, the reutilization of agri-food by-products may involve the accumulation of pesticides. Even though the waste-to-bioproducts trend has been widely studied, the potential accumulation of pesticides during by-product revalorization has been scarcely assessed. Therefore, in this study, the most common pesticides found in eight highly productive crops in Spain are evaluated according to the available published data, mainly from EFSA reports. Among these, oranges, berries and peppers showed an increasing tendency regarding pesticide exceedances. In addition, the adverse effects of pesticides on human and animal health and the environment were considered. Finally, a safety assessment was developed to understand if the reutilization of citrus peels to recover ascorbic acid (AA) would represent a risk to human health. The results obtained seem to indicate the safety of this by-product to recover AA concentrations to avoid scurvy (45 mg/day) and improve health (200 mg/day). Therefore, this work evaluates the potential risk of pesticide exposure through the revalorization of agri-food by-products using peels from citruses, one of the major agricultural crops in Spain, as a case study.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Javier Echave
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Consejo Nacional de Investigaciones Científicas y Técnicas (INTEMA-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| |
Collapse
|
8
|
Lu W, Yu H, Liang Y, Zhai S. Evaluation of Methanotroph ( Methylococcus capsulatus, Bath) Bacteria Protein as an Alternative to Fish Meal in the Diet of Juvenile American Eel ( Anguilla rostrata). Animals (Basel) 2023; 13:681. [PMID: 36830467 PMCID: PMC9952290 DOI: 10.3390/ani13040681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This study was conducted to evaluate the effects of replacing fish meal (FM) with methanotroph (Methylococcus capsulatus, Bath) bacteria protein (MBP) in the diets of the juvenile American eel (Anguilla rostrata). Trial fish were randomly divided into the MBP0 group, MBP6 group, MBP12 group, and MBP18 group fed the diets with MBP replacing FM at levels of 0, 6%, 12%, and 18%, respectively. The trial lasted for ten weeks. There were no significant differences in weight gain or feed utilization among the MBP0, MBP6, and MBP12 groups (except for the feeding rate in the MBP12 group). Compared with the MBP0 group, the D-lactate level and diamine oxidase activity in the serum were significantly elevated in the MBP12 and MBP18 groups. In terms of non-specific immunity parameters in serum, the alkaline phosphatase activity was significantly decreased in the MBP18 group, and the complement 3 level was significantly elevated in the MBP12 and MBP18 groups. The activities of lipase and protease in the intestine were significantly decreased in the MBP12 and MBP18 groups. Compared with the MBP0 group, the total antioxidant capacity and activities of superoxide dismutase, catalase, and glutathione peroxidase in the intestine were significantly decreased in the MBP18 group, while the malondialdehyde level was significantly increased. The villus height, muscular thickness, and microvillus density were significantly decreased in the MBP12 and MBP18 groups. There were no significant differences in the foresaid parameters between the MBP0 group and the MBP6 group. The intestinal microbiota of the MBP6 group was beneficially regulated to maintain similar growth and health status with the MBP0 group. The adverse effects on the intestinal microbiota were reflected in the MBP18 group. In conclusion, MBP could successfully replace 6% of FM in the diet without adversely affecting the growth performance, serum biochemical parameters, and intestinal health of juvenile American eels.
Collapse
Affiliation(s)
- Wenqi Lu
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
| | - Haixia Yu
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
| | - Ying Liang
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China
| | - Shaowei Zhai
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China
| |
Collapse
|