1
|
Molina-Hernandez JB, Grande-Tovar CD, Neri L, Delgado-Ospina J, Rinaldi M, Cordero-Bueso GA, Chaves-López C. Enhancing postharvest food safety: the essential role of non-thermal technologies in combating fungal contamination and mycotoxins. Front Microbiol 2025; 16:1543716. [PMID: 40135060 PMCID: PMC11934074 DOI: 10.3389/fmicb.2025.1543716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
During the production and storage of agricultural products, molds frequently occur as contaminants that can produce a wide range of secondary metabolites, the most important of which are mycotoxins. To solve these problems, the industry uses various methods, products and processes. This review examines the latest advances in novel non-thermal technologies for post-harvest inactivation of filamentous fungi and reduction of mycotoxins. These technologies include high pressure processes (HPP), ozone treatment, UV light, blue light, pulsed light, pulsed electric fields (PEF), cold atmospheric plasma (CAP), electron beams, ultrasound (US) and nanoparticles. Using data from previous studies, this review provides an overview of the primary mechanisms of action and recent results obtained using these technologies and emphasizes the limitations and challenges associated with each technology. The innovative non-thermal methods discussed here have been shown to be safe and efficient tools for reducing food mold contamination and infection. However, the effectiveness of these technologies is highly dependent on the fungal species and the structural characteristics of the mycotoxins. New findings related to the inactivation of fungi and mycotoxins underline that for a successful application it is essential to carefully determine and optimize certain key parameters in order to achieve satisfactory results. Finally, this review highlights and discusses future directions for non-thermal technologies. It emphasizes that they meet consumer demand for clean and safe food without compromising nutritional and sensory qualities.
Collapse
Affiliation(s)
- Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Lilia Neri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Colombia
| | | | - Gustavo Adolfo Cordero-Bueso
- Laboratorio de Microbiología, CASEM, Dpto. Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Sojithamporn P, Leksakul K, Sawangrat C, Charoenchai N, Boonyawan D. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 2023; 12:4386. [PMID: 38137190 PMCID: PMC10743213 DOI: 10.3390/foods12244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Water, soil, and food products contain pesticide residues. These residues result from excessive pesticides use, motivated by the fact that agricultural productivity can be increased by the use of these pesticides. The accumulation of these residues in the body can cause health problems, leading to food safety concerns. Cold plasma technology has been successfully employed in various applications, such as seed germination, bacterial inactivation, wound disinfection, surface sterilization, and pesticide degradation. In recent years, researchers have increasingly explored the effectiveness of cold plasma technology in the degradation of pesticide residues. Most studies have shown promising outcomes, encouraging further research and scaling-up for commercialization. This review summarizes the use of cold plasma as an emerging technology for pesticide degradation in terms of the plasma system and configuration. It also outlines the key findings in this area. The most frequently adopted plasma systems for each application are identified, and the mechanisms underlying pesticide degradation using cold plasma technology are discussed. The possible factors influencing pesticide degradation efficiency, challenges in research, and future trends are also discussed. This review demonstrates that despite the nascent nature of the technology, the use of cold plasma shows considerable potential in regards to pesticide residue degradation, particularly in food applications.
Collapse
Affiliation(s)
- Phanumas Sojithamporn
- Graduate Program in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Nivit Charoenchai
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Center (PBP), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
3
|
Konchekov EM, Gusein-zade N, Burmistrov DE, Kolik LV, Dorokhov AS, Izmailov AY, Shokri B, Gudkov SV. Advancements in Plasma Agriculture: A Review of Recent Studies. Int J Mol Sci 2023; 24:15093. [PMID: 37894773 PMCID: PMC10606361 DOI: 10.3390/ijms242015093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
This review is devoted to a topic of high interest in recent times-the use of plasma technologies in agriculture. The increased attention to these studies is primarily due to the demand for the intensification of food production and, at the same time, the request to reduce the use of pesticides. We analyzed publications, focusing on research conducted in the last 3 years, to identify the main achievements of plasma agrotechnologies and key obstacles to their widespread implementation in practice. We considered the main types of plasma sources used in this area, their advantages and limitations, which determine the areas of application. We also considered the use of plasma-activated liquids and the efficiency of their production by various types of plasma sources.
Collapse
Affiliation(s)
- Evgeny M. Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Namik Gusein-zade
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Leonid V. Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| | - Alexey S. Dorokhov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.S.D.)
| | - Andrey Yu. Izmailov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.S.D.)
| | - Babak Shokri
- Physics Department, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.-z.); (D.E.B.); (L.V.K.); (S.V.G.)
| |
Collapse
|
4
|
Bennett C, Ngamrung S, Ano V, Umongno C, Mahatheeranont S, Jakmunee J, Nisoa M, Leksakul K, Sawangrat C, Boonyawan D. Comparison of plasma technology for the study of herbicide degradation. RSC Adv 2023; 13:14078-14088. [PMID: 37197673 PMCID: PMC10184135 DOI: 10.1039/d3ra00459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
The study aimed to investigate the effects of two different plasma systems, including pinhole plasma jet and gliding arc (GA) plasma, for the degradation of herbicide, diuron, in plasma activated solutions (PAS). In the GA plasma system, air was used to generate plasma, however, Ar, oxygen and nitrogen at different gas compositions were compared in the pinhole plasma jet system. The Taguchi design model was used to study the effects of gas compositions. Results revealed that the pinhole plasma jet system was able to degrade over 50% of the diuron in 60 minutes. The optimal plasma generation condition for the highest degradation of diuron used pure Ar gas. The highest degradation percentage of herbicide in PAS corresponded to the lowest hydrogen peroxide (H2O2) content, nitrite concentration and electrical conductivity (EC) of the PAS. The diuron degradation products were identified as 3,4-dichloro-benzenamine, 1-chloro-3-isocyanato-benzene and 1-chloro-4-isocyanato-benzene via gas chromatography-mass spectrometry (GC-MS). The GA plasma system was not adequate for the degradation of herbicide in PAS.
Collapse
Affiliation(s)
- Chonlada Bennett
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University Chiang Mai 50100 Thailand
| | - Sawanya Ngamrung
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University Chiang Mai 50100 Thailand
| | - Vithun Ano
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University Chiang Mai 50100 Thailand
| | - Chanchai Umongno
- Plasma and Beam Physics Research, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University Chiang Mai 50200 Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Mudtorlep Nisoa
- School of Science, Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University Chiang Mai 50200 Thailand
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University Chiang Mai 50200 Thailand
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|