1
|
Molina-Hernandez JB, Grande-Tovar CD, Neri L, Delgado-Ospina J, Rinaldi M, Cordero-Bueso GA, Chaves-López C. Enhancing postharvest food safety: the essential role of non-thermal technologies in combating fungal contamination and mycotoxins. Front Microbiol 2025; 16:1543716. [PMID: 40135060 PMCID: PMC11934074 DOI: 10.3389/fmicb.2025.1543716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
During the production and storage of agricultural products, molds frequently occur as contaminants that can produce a wide range of secondary metabolites, the most important of which are mycotoxins. To solve these problems, the industry uses various methods, products and processes. This review examines the latest advances in novel non-thermal technologies for post-harvest inactivation of filamentous fungi and reduction of mycotoxins. These technologies include high pressure processes (HPP), ozone treatment, UV light, blue light, pulsed light, pulsed electric fields (PEF), cold atmospheric plasma (CAP), electron beams, ultrasound (US) and nanoparticles. Using data from previous studies, this review provides an overview of the primary mechanisms of action and recent results obtained using these technologies and emphasizes the limitations and challenges associated with each technology. The innovative non-thermal methods discussed here have been shown to be safe and efficient tools for reducing food mold contamination and infection. However, the effectiveness of these technologies is highly dependent on the fungal species and the structural characteristics of the mycotoxins. New findings related to the inactivation of fungi and mycotoxins underline that for a successful application it is essential to carefully determine and optimize certain key parameters in order to achieve satisfactory results. Finally, this review highlights and discusses future directions for non-thermal technologies. It emphasizes that they meet consumer demand for clean and safe food without compromising nutritional and sensory qualities.
Collapse
Affiliation(s)
- Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Lilia Neri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Colombia
| | | | - Gustavo Adolfo Cordero-Bueso
- Laboratorio de Microbiología, CASEM, Dpto. Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Antos P, Szulc J, Ruman T, Balawejder M, Tereszkiewicz K, Kusz B. Ozonation procedure for removal of mycotoxins in maize: A promising screening approach for improvement of food safety. PLoS One 2024; 19:e0310317. [PMID: 39480768 PMCID: PMC11527245 DOI: 10.1371/journal.pone.0310317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/25/2024] [Indexed: 11/02/2024] Open
Abstract
Mycotoxins are well known secondary metabolites of various fungi. They pose a significant threat to human and animal when present in food or feed. They can be responsible for losses in grain production and in livestock or human intoxication. In this study, several mycotoxins were detected in Aspergillus fumigatus contaminated maize kernels. The contaminated kernels were treated with gaseous ozone at a concentration of 500 and 3000 ppm for 1 hour. Depending on the specific compound, the contamination level was reduced by up to 100%. This screening research showed that a concentration of ozone as high as 3000 ppm could be sufficient to completely remove several toxic compounds from the maize matrix.
Collapse
Affiliation(s)
- Piotr Antos
- Department of Computer Engineering in Management, Rzeszow University of Technology, Rzeszów, Poland
| | - Justyna Szulc
- Department of Environmental Biotechnology, Lodz University of Technology, Łódź, Poland
| | - Tomasz Ruman
- Department of Inorganic and Analytical Chemistry, Rzeszow University of Technology, Rzeszów, Poland
| | - Maciej Balawejder
- College of Natural Sciences, Institute of Food Technology and Nutrition University of Rzeszow, Rzeszow, Poland
| | - Krzysztof Tereszkiewicz
- Department of Computer Engineering in Management, Rzeszow University of Technology, Rzeszów, Poland
| | - Bożena Kusz
- Department of Computer Engineering in Management, Rzeszow University of Technology, Rzeszów, Poland
| |
Collapse
|
3
|
Hudu AR, Addy F, Mahunu GK, Abubakari A, Opoku N. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub-Saharan Africa. Food Sci Nutr 2024; 12:4489-4512. [PMID: 39055180 PMCID: PMC11266927 DOI: 10.1002/fsn3.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
The fungal genus Fusarium contains many important plant pathogens as well as endophytes of wild and crop plants. Globally, Fusarium toxins in food crops are considered one of the greatest food safety concerns. Their occurrence has become more pronounced in Africa in recent times. Among the major Fusarium mycotoxins with food and feed safety concerns, zearalenone is frequently detected in finished feeds and cereals in Africa. However, the impact of indigenous agricultural practices (pre- and postharvest factors) and food processing techniques on the prevalence rate of Fusarium species and zearalenone occurrence in food and feed have not been collated and documented systematically. This review studies and analyzes recent reports on zearalenone contamination in maize and other cereal products from Africa, including its fungi producers, agronomic and climate variables impacting their occurrences, preventive measures, removal/decontamination methods, and legislations regulating their limits. Reports from relevant studies demonstrated a high prevalence of F. verticillioides and F. graminearum as Africa's main producers of zearalenone. Elevated CO2 concentration and high precipitation may carry along an increased risk of zearalenone contamination in maize. African indigenous processing methods may contribute to reduced ZEA levels in agricultural products and foods. Most African countries do not know their zearalenone status in the food supply chain and they have limited regulations that control its occurrence.
Collapse
Affiliation(s)
- Abdul Rashid Hudu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Francis Addy
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| | - Gustav Komla Mahunu
- Department of Food Science and Technology, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Abdul‐Halim Abubakari
- Department of Horticulture, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Nelson Opoku
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| |
Collapse
|
4
|
Djalovic I, Grahovac N, Stojanović Z, Đurović A, Živančev D, Jakšić S, Jaćimović S, Tian C, Prasad PVV. Nutritional and Chemical Quality of Maize Hybrids from Different FAO Maturity Groups Developed and Grown in Serbia. PLANTS (BASEL, SWITZERLAND) 2024; 13:143. [PMID: 38202451 PMCID: PMC10780984 DOI: 10.3390/plants13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Maize is a globally significant cereal crop, contributing to the production of essential food products and serving as a pivotal resource for diverse industrial applications. This study investigated the proximate analysis of maize hybrids from different FAO maturity groups in Serbia, exploring variations in polyphenols, flavonoids, carotenoids, tocopherols, and fatty acids with the aim of understanding how agroecological conditions influence the nutritional potential of maize hybrids. The results indicate substantial variations in nutritional composition and antioxidant properties among different maturity groups. The levels of total polyphenols varied among FAO groups, indicating that specific hybrids may offer greater health benefits. Flavonoids and carotenoids also showed considerable variation, with implications for nutritional quality. Tocopherol content varied significantly, emphasizing the diversity in antioxidant capacity. Fatty acid analysis revealed high levels of unsaturated fatty acids, particularly linoleic acid, indicating favorable nutritional and industrial properties. The study highlights the importance of considering maturity groups in assessing the nutritional potential of maize hybrids.
Collapse
Affiliation(s)
- Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (I.D.); (D.Ž.); (S.J.); (S.J.)
| | - Nada Grahovac
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (I.D.); (D.Ž.); (S.J.); (S.J.)
| | - Zorica Stojanović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.S.); (A.Đ.)
| | - Ana Đurović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.S.); (A.Đ.)
| | - Dragan Živančev
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (I.D.); (D.Ž.); (S.J.); (S.J.)
| | - Snežana Jakšić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (I.D.); (D.Ž.); (S.J.); (S.J.)
| | - Simona Jaćimović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (I.D.); (D.Ž.); (S.J.); (S.J.)
| | - Caihuan Tian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
5
|
Chiappim W, de Paula Bernardes V, Almeida NA, Pereira VL, Bragotto APA, Cerqueira MBR, Furlong EB, Pessoa R, Rocha LO. Effect of Gliding Arc Plasma Jet on the Mycobiota and Deoxynivalenol Levels in Naturally Contaminated Barley Grains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5072. [PMID: 36981981 PMCID: PMC10049212 DOI: 10.3390/ijerph20065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Fusarium graminearum and Fusarium meridionale are primary contaminants of barley, capable of producing several mycotoxins, mainly type B trichothecenes and zearalenone. Cold plasma decontamination has been gaining prominence, seeking to control the fungal and mycotoxin contamination of food and feed and to improve product quality. To reach this objective, the present study was divided into two parts. In the first part, F. meridionale and F. graminearum strains were exposed to gliding arc plasma jet (GAPJ). Cell viability tests showed the inactivation of F. meridionale after 15-min treatment, whereas F. graminearum showed to be resistant. In the second part, barley grains were treated by GAPJ for 10, 20, and 30 min, demonstrating a reduction of about 2 log CFU/g of the barley's mycobiota, composed of yeasts, strains belonging to the F. graminearum species complex, Alternaria, and Aspergillus. A decrease in DON levels (up to 89%) was observed after exposure for 20 min. However, an increase in the toxin Deoxynivalenol-3-glucoside (D3G) was observed in barley grains, indicating a conversion of DON to D3G.
Collapse
Affiliation(s)
- William Chiappim
- Laboratory of Plasmas and Applications, Department of Physics, Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, Brazil
| | - Vanessa de Paula Bernardes
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Naara Aparecida Almeida
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Viviane Lopes Pereira
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Adriana Pavesi Arisseto Bragotto
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | | | - Eliana Badiale Furlong
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande 96203-900, Brazil
| | - Rodrigo Pessoa
- Laboratório de Plasmas e Processos, Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, Brazil
| | - Liliana Oliveira Rocha
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| |
Collapse
|