1
|
Ionescu C, Samide A, Tigae C. Trend in Detection of Anthocyanins from Fresh Fruits and the Influence of Some Factors on Their Stability Impacting Human Health: Kinetic Study Assisted by UV-Vis Spectrophotometry. Antioxidants (Basel) 2025; 14:227. [PMID: 40002412 PMCID: PMC11852030 DOI: 10.3390/antiox14020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Anthocyanins (ANTHs) are polyphenolic compounds with health promoting properties, being known for their strong antioxidant effects as well as for their antimicrobial properties, obesity and cardiovascular disease prevention, and anticarcinogenic activity. Being main dietary components, it is important to know the content of anthocyanins in various dietary sources and their stability in time. The total anthocyanin content (TAC) of various fresh fruits has been spectrophotometrically determined using the pH differential method. The results showed that in the analyzed samples, the TAC increased in the order: blackcurrants > blackberries > blueberries > raspberries > strawberries > plums. The degradation degree of anthocyanins extracted from blueberries (BBEs) in an ethanol/water solution in four experimental conditions was studied. Kinetic studies have been approached, fitting the experimental data recorded by UV-Vis spectrophotometric analysis in agreement with some kinetic models verified for the ANTH degradation reaction. Therefore, zero-order kinetics for BBE extract degradation exposed to sunlight were identified, while for the other storage conditions (shadow, dark, cold), the first-order kinetics were respected. The results indicate that the stability decreased as follows: (ANTH stability)sunlight test << (ANTH stability)shadow test ≈ (ANTH stability)dark test < (ANTH stability)cold test. A mechanism for BBE anthocyanin degradation was proposed and the impact on human health of the degradation products is discussed.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107i, 200144 Craiova, Romania;
| | - Adriana Samide
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107i, 200144 Craiova, Romania;
| | | |
Collapse
|
2
|
Suzauddula M, Kobayashi K, Park S, Sun XS, Wang W. Bioengineered Anthocyanin-Enriched Tomatoes: A Novel Approach to Colorectal Cancer Prevention. Foods 2024; 13:2991. [PMID: 39335919 PMCID: PMC11430996 DOI: 10.3390/foods13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, with barriers to effective prevention and treatment including tumor recurrence, chemoresistance, and limited overall survival rates. Anthocyanins, known for their strong anti-cancer properties, have shown promise in preventing and suppressing various cancers, including CRC. However, natural sources of anthocyanins often fail to provide sufficient quantities needed for therapeutic effects. Bioengineered crops, particularly anthocyanin-enriched tomatoes, offer a viable solution to enhance anthocyanin content. Given its large-scale production and consumption, tomatoes present an ideal target for bioengineering efforts aimed at increasing dietary anthocyanin intake. This review provides an overview of anthocyanins and their health benefits, elucidating the mechanisms by which anthocyanins modulate the transcription factors involved in CRC development. It also examines case studies demonstrating the successful bioengineering of tomatoes to boost anthocyanin levels. Furthermore, the review discusses the effects of anthocyanin extracts from bioengineered tomatoes on CRC prevention, highlighting their role in altering metabolic pathways and reducing tumor-related inflammation. Finally, this review addresses the challenges associated with bioengineering tomatoes and proposes future research directions to optimize anthocyanin enrichment in tomatoes.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Sunghun Park
- Department of Horticulture and Nature Resources, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| |
Collapse
|
3
|
Lu XQ, Li J, Wang B, Qin S. Computational Insights into the Radical Scavenging Activity and Xanthine Oxidase Inhibition of the Five Anthocyanins Derived from Grape Skin. Antioxidants (Basel) 2024; 13:1117. [PMID: 39334776 PMCID: PMC11428504 DOI: 10.3390/antiox13091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, typical polyphenol compounds in grape skin, have attracted increasing interest due to their health-promoting properties. In this body of work, five representative anthocyanins (Cy-3-O-glc, Dp-3-O-glc, Pn-3-O-glc, Mv-3-O-glc, and Pt-3-O-glc) were studied using the density functional theory (DFT) to elucidate structure-radical scavenging activity in the relationship and the reaction path underlying the radical-trapping process. Based on thermodynamic parameters involved in HAT, SET-PT, and SPLET mechanisms, along with the structural attributes, it was found that the C4' hydroxyl group mainly contributes to the radical scavenging activities of the investigated compounds. Pt-3-O-glc exhibits a good antioxidant capacity among the five compounds. The preferred radical scavenging mechanisms vary in different phases. For the Pt-3-O-glc compound, the calculations indicate the thermodynamically favoured product is benzodioxole, rather than o-quinone, displaying considerably reduced energy in double HAT mechanisms. Additionally, the thermodynamic and kinetic calculations indicate that the reaction of •OH into the 4'-OH site of Pt-3-O-glc has a lower energy barrier (7.6 kcal/mol), a higher rate constant (5.72 × 109 M-1 s-1), and exhibits potent •OH radical scavenging properties. Molecular docking results have shown the strong affinity of the studied anthocyanins with the pro-oxidant enzyme xanthine oxidase, displaying their significant role in inhibiting ROS formation.
Collapse
Affiliation(s)
- Xiao-Qin Lu
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bin Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
4
|
Maslov O, Komisarenko M, Ponomarenko S, Kolisnyk S, Osolodchenko T, Golik M. Chemical composition, antioxidant and antimicrobial activities of Vaccinium macrocarpon (Ericaceae) and Camellia sinensis (Theaceae) extracts. REGULATORY MECHANISMS IN BIOSYSTEMS 2024; 15:642-647. [DOI: 10.15421/022492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In the modern scientific community, considerable attention is given to studying the pharmacological activity of catechin and anthocyanin derivatives. However, a comparative analysis of the antioxidant and antimicrobial activities of extracts rich in anthocyanins and catechins has not been previously conducted. So, the purpose of this work was to study and compare phytochemical composition, antimicrobial and antioxidant potential of Vaccinium macrocarpon L., Ericaceae fruit thick and Camellia sinensis L., Theaceae leaf liquid extracts. The quantification of biologically active substances (BAS) was accomplished with spectrophotometric, titrimetric and HPLC methods of analysis; antioxidant activity was determined by the potentiometric method; antimicrobial and anti-fungi effects was evaluated by the well method and minimum inhibition concentration. The total content of phenolic compounds was 0.47% and 10.10%, organic acids – 4.27% and 1.60% for V. macrocarpon fruit thick and C. sinensis leaf extract. The total content of catechins in the C. sinensis leaf extract was 105,000 mg/kg, where epicatechin-3-O-gallate dominated (37300 mg/kg). The total content of anthocyanins in the V. macrocarpon fruit thick extract was 1280 mg/kg, where peonidin-3-O-galactoside dominated (408 mg/kg). Both extracts possessed a high antioxidant potential, and effective antimicrobial and anti-fungi effects. The antioxidant, antimicrobial and anti-fungi activity of V. macrocarpon fruit extract was higher than C. sinensis leaf extract. In addition, we assumed that anthocyanins had higher antioxidant, antimicrobial and anti-fungi properties than catechins. These findings would promote application of V. macrocarpon fruits extract as pharmaceuticals and nutraceuticals.
Collapse
|
5
|
Bayazid AB, Lim BO. Therapeutic Effects of Plant Anthocyanin against Alzheimer's Disease and Modulate Gut Health, Short-Chain Fatty Acids. Nutrients 2024; 16:1554. [PMID: 38892488 PMCID: PMC11173718 DOI: 10.3390/nu16111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and neurogenerative disease (NDD), and it is also one of the leading causes of death worldwide. The number of AD patients is over 55 million according to 2020 Alzheimer's Disease International (ADI), and the number is increasing drastically without any effective cure. In this review, we discuss and analyze the potential role of anthocyanins (ACNs) against AD while understanding the molecular mechanisms. ACNs have been reported as having neuroprotective effects by mitigating cognitive impairments, apoptotic markers, neuroinflammation, aberrant amyloidogenesis, and tauopathy. Taken together, ACNs could be an important therapeutic agent for combating or delaying the onset of AD.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Biological Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp., 268 Chungwondaero, Chungju 27478, Republic of Korea
| |
Collapse
|
6
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
7
|
Saeed A, Kauser S, Hussain A, Siddiqui NJ, Abidi SHI, Syed Q, Nadeem AA. Tracking the Variations in Trace Elements, Some Nutrients, Phenolics, and Anthocyanins in Grewia asiatica L. (Phalsa) at Different Fruit Development Stages. Biol Trace Elem Res 2024; 202:1784-1801. [PMID: 37464170 DOI: 10.1007/s12011-023-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Grewia asiatica L. (phalsa) is a very prevalent berry in Pakistan and is consumed extensively as raw or in the form of juice. Here, for the first time, we assessed phalsa from Pakistan in terms of variations in macro and micro minerals, nutrients, and bio-active phyto-constituents including total phenolic and anthocyanin contents at different fruit developmental stages. It was found that the sugars in phalsa increased from D1 (small at the initial fruit setting stage) to D6 development stage (fully ripened fruit) where sugars at D5 (near to fully ripe) and D6 stages were many times greater than at D1, D2 (unripe close to full-size completion), D3 (close to semi ripe), and D4 stage (semi ripened and full-size attainment). Total acidity of was declined in all developmental stages, where the D1 stage displayed maximum and D6 with the lowest acidity. Ascorbic acid was decreased from D1 to D2 and then increased gradually from D3 to D5 stages. At the D6 stage, again a steep decline in ascorbic acid was observed. The total phenolics (mg gallic acid equivalents/100g) at stage D6 were higher (136.02 ± 1.17), whereas D1 being the lowermost in total phenolic content (79.89 ± 1.72). For anthocyanins (mg/100g), an increasing pattern of changes was observed in all stages of phalsa fruit where the D1 stage showed lower (13.97 ± 4.84) anthocyanin contents which then increased gradually at stage D2 (67.79 ± 6.73), but increased sharply at D3 (199.66 ± 4.90), D4 (211.02 ± 18.85), D5 (328.41 ±14.96) and D6 (532.30 ± 8.51) stages. A total of four anthocyanins such as cyanidin, delphidine-3-glucoside, pelargonidin, and malvidin in phalsa were identified using HPLC procedures, and a significant > 90 % DPPH inhibition in phalsa was observed at the D5 and D6 development stages. The macro and micro minerals including Ni, Zn, Fe, Ca, Cu, Mg, Na, P, and K contents were decreased from initial (D1) stage to the final (D6) development stage, while only Fe displayed an increasing trend from the initial to final fruit development stages (D1-D6). Conclusively, these findings could be of great interest for patients who are intended to consume phalsa as adjuvant therapy against diabetes and metabolic syndromes and other diseases involving reactive oxygen species with minimum metal toxicity.
Collapse
Affiliation(s)
- Asma Saeed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Shabana Kauser
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Adil Hussain
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan.
| | - Nida Jamil Siddiqui
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Syed Hussain Imam Abidi
- Pakistan Council of Scientific and Industrial Research (PCSIR), Head Office, 1 Constitution Avenue, G-5/2, Islamabad, 44000, Pakistan
| | - Quratulain Syed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Abad Ali Nadeem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| |
Collapse
|
8
|
Liu H, Jin Y, Huang L, Miao C, Tang J, Zhang H, Yin H, Lu X, Li N, Dai S, Gentile A, Zhang L, Sheng L. Transcriptomics and metabolomics reveal the underlying mechanism of drought treatment on anthocyanin accumulation in postharvest blood orange fruit. BMC PLANT BIOLOGY 2024; 24:160. [PMID: 38429733 PMCID: PMC10908157 DOI: 10.1186/s12870-024-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Anthocyanins are the most important compounds for nutritional quality and economic values of blood orange. However, there are few reports on the pre-harvest treatment accelerating the accumulation of anthocyanins in postharvest blood orange fruit. Here, we performed a comparative transcriptome and metabolomics analysis to elucidate the underlying mechanism involved in seasonal drought (SD) treatment during the fruit expansion stage on anthocyanin accumulation in postharvest 'Tarocco' blood orange fruit. RESULTS Our results showed that SD treatment slowed down the fruit enlargement and increased the sugar accumulation during the fruit development and maturation period. Obviously, under SD treatment, the accumulation of anthocyanin in blood orange fruit during postharvest storage was significantly accelerated and markedly higher than that in CK. Meanwhile, the total flavonoids and phenols content and antioxidant activity in SD treatment fruits were also sensibly increased during postharvest storage. Based on metabolome analysis, we found that substrates required for anthocyanin biosynthesis, such as amino acids and their derivatives, and phenolic acids, had significantly accumulated and were higher in SD treated mature fruits compared with that of CK. Furthermore, according to the results of the transcriptome data and weighted gene coexpression correlation network analysis (WGCNA) analysis, phenylalanine ammonia-lyase (PAL3) was considered a key structural gene. The qRT-PCR analysis verified that the PAL3 was highly expressed in SD treated postharvest stored fruits, and was significantly positively correlated with the anthocyanin content. Moreover, we found that other structural genes in the anthocyanin biosynthesis pathway were also upregulated under SD treatment, as evidenced by transcriptome data and qRT-PCR analysis. CONCLUSIONS The findings suggest that SD treatment promotes the accumulation of substrates necessary for anthocyanin biosynthesis during the fruit ripening process, and activates the expression of anthocyanin biosynthesis pathway genes during the postharvest storage period. This is especially true for PAL3, which co-contributed to the rapid accumulation of anthocyanin. The present study provides a theoretical basis for the postharvest quality control and water-saving utilization of blood orange fruit.
Collapse
Affiliation(s)
- Hongbin Liu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Le Huang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Chouyu Miao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayi Tang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Haojie Yin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Suming Dai
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Alessandra Gentile
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Department of Agriculture and Food Science, University of Catania, Catania, 95123, Italy
| | - Ling Zhang
- Agriculture and Rural Bureau of Mayang Miao Autonomous County, Huaihua, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
Sik B, Ajtony Z, Lakatos E, Székelyhidi R. Wild Blackberry Fruit ( Rubus fruticosus L.) as Potential Functional Ingredient in Food: Ultrasound-Assisted Extraction Optimization, Ripening Period Evaluation, Application in Muffin, and Consumer Acceptance. Foods 2024; 13:666. [PMID: 38472779 DOI: 10.3390/foods13050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of the present study is to evaluate the antioxidant properties of wild blackberry fruits as well as their possible use in powdered form as a functional ingredient. For this, ultrasound-assisted extraction optimization, ripening stage evaluation, and wild blackberry powder incorporation into a real food matrix were applied. The optimum conditions for extraction were as follows: 60% MeOH, 20 min of extraction time, acidification with 0.5% HCl, and a 1:40 g/mL solid-to-solvent ratio, which allowed the following yields: total polyphenol content (TPC): 53.8 mg GAE/g; total flavonoid content (TFC): 5.78 mg QE/g; total monomer anthocyanin content (TMA): 11.2 mg CGE/g; 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH): 71.5 mg AAE/g; IC50: 52.3 µg/mL. The study also highlighted that, during the ripening process, the TPC (41.4%), TFC (17.0%), and DPPH levels (66.4%) of the fruits decreased while the TMA yield increased. The incorporation of blackberry powder at different levels (5-20%) increased the TPC, TFC, TMA, and antioxidant properties of muffins. Although the muffins enriched with 20% wild blackberry powder had the best chemical properties (TPC: 3.15 mg GAE/g; TFC: 0.52 mg QE/g; TMA: 0.23 mg CGE/g; DPPH: 1.70 mg AAE/g; IC50: 1.65 mg/mL), the sensory analysis showed that the addition of blackberry fruit at a concentration of 10% to the muffins resulted in the best consumer acceptability.
Collapse
Affiliation(s)
- Beatrix Sik
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Zsolt Ajtony
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Rita Székelyhidi
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
10
|
Oda A, Hakamata Y, Kobayashi E. Pre-Administration of Blackberry Extracts in Induced Ischemia Reperfusion Events in Rodents. Metabolites 2023; 13:1114. [PMID: 37999210 PMCID: PMC10673227 DOI: 10.3390/metabo13111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Blackberries are abundant in substances that have antioxidative and other effects, and technologies for enhancing the effectiveness of their incorporation into the body are being developed. The effectiveness of such substances has been investigated in various models, including rodent ischemia models. While a test substance can be administered either before or after an event, healthy foods are generally pre-administered prophylactically in experiments. Pre-administration may have the potential to elevate the blood concentration of the active substance sufficiently prior to the event and/or induce adaptive changes in the ischemic tolerance of the recipient through long-term pre-administration. Based on the recently reported 2-week pre-administration of blackberries in a rat model, we investigated the pre-administration of blackberry extracts in a hyperlipidemia model using Mongolian gerbils. We then discussed the effects of the pre-administration on the treated animals before an ischemic event.
Collapse
Affiliation(s)
| | | | - Eiji Kobayashi
- Division of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
11
|
Yu L, Yue J, Dai Y, Zhang L, Wang Q, Yuan J. Characterization of color variation in bamboo sheath of Chimonobambusa hejiangensis by UPLC-ESI-MS/MS and RNA sequencing. BMC PLANT BIOLOGY 2023; 23:466. [PMID: 37803268 PMCID: PMC10557168 DOI: 10.1186/s12870-023-04494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Chimonobambusa hejiangensis (C.hejiangensis) is a high-quality bamboo species native to China, known for its shoots that are a popular nutritional food. Three C.hejiangensis cultivars exhibit unique color variation in their shoot sheaths, however, the molecular mechanism behind this color change remains unclear. METHODS We investigated flavonoid accumulation in the three bamboo cultivar sheaths using metabolomics and transcriptomics. RESULTS UPLC-MS/MS identified 969 metabolites, with 187, 103, and 132 having differential accumulation in the yellow-sheath (YShe) vs. spot-sheath (SShe)/black-sheath (BShe) and SShe vs. BShe comparison groups. Flavonoids were the major metabolites that determined bamboo sheath color through differential accumulation of metabolites (DAMs) analysis. Additionally, there were 33 significantly differentially expressed flavonoid structural genes involved in the anthocyanin synthesis pathway based on transcriptome data. We conducted a KEGG analysis on DEGs and DAMs, revealing significant enrichment of phenylpropanoid and flavonoid biosynthetic pathways. Using gene co-expression network analysis, we identified nine structural genes and 29 transcription factors strongly linked to anthocyanin biosynthesis. CONCLUSION We identified a comprehensive regulatory network for flavonoid biosynthesis which should improve our comprehension of the molecular mechanisms responsible for color variation and flavonoid biosynthesis in bamboo sheaths.
Collapse
Affiliation(s)
- Lei Yu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China
| | - Jinjun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China
| | - Yaxing Dai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China
| | - Ling Zhang
- Forestry and Bamboo Bureau of Changning County, Sichuan Province, 644300, China
| | - Qiu Wang
- Forestry and Bamboo Bureau of Changning County, Sichuan Province, 644300, China
| | - Jinling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China.
| |
Collapse
|
12
|
Martins MS, Gonçalves AC, Alves G, Silva LR. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int J Mol Sci 2023; 24:12024. [PMID: 37569399 PMCID: PMC10418693 DOI: 10.3390/ijms241512024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Blackberries and mulberries are small and perishable fruits that provide significant health benefits when consumed. In reality, both are rich in phytochemicals, such as phenolics and volatile compounds, and micronutrients, such as vitamins. All the compounds are well-known thanks to their medicinal and pharmacological properties, namely antioxidant, anti-inflammatory, anti-cancer, antiviral, and cardiovascular properties. Nevertheless, variables such as genotype, production conditions, fruit ripening stage, harvesting time, post-harvest storage, and climate conditions influence their nutritional composition and economic value. Given these facts, the current review focuses on the nutritional and chemical composition, as well as the health benefits, of two blackberry species (Rubus fruticosus L., and Rubus ulmifolius Schott) and one mulberry species (Morus nigra L.).
Collapse
Affiliation(s)
- Mariana S. Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
| | - Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Matei PL, Deleanu I, Brezoiu AM, Chira NA, Busuioc C, Isopencu G, Cîlțea-Udrescu M, Alexandrescu E, Stoica-Guzun A. Ultrasound-Assisted Extraction of Blackberry Seed Oil: Optimization and Oil Characterization. Molecules 2023; 28:molecules28062486. [PMID: 36985462 PMCID: PMC10053259 DOI: 10.3390/molecules28062486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Ultrasound-assisted extraction (UAE) was applied to extract oil from blackberry (BB) seeds. The effect of UAE conditions on oil recovery and quality was investigated. Favorable experimental conditions (ultrasound intensity (UI), extraction temperature, and time) were investigated using response surface methodology (RSM). A Box–Behnken design was used to predict optimized conditions for BB seed oil extraction. These conditions were as follows: 13.77 W/cm2 UI, 45 °C extraction temperature, and 15 min extraction time. The experimental value obtained for extraction efficiency under optimal conditions was 87 ± 0.34%, in good agreement with the optimized predicted value. UAE does not affect the oil composition and confers higher antioxidant values in BB seed oil in comparison with Soxhlet extraction.
Collapse
Affiliation(s)
- Petronela L. Matei
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Iuliana Deleanu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Ana M. Brezoiu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Nicoleta A. Chira
- Department of Organic Chemistry “Costin Neniţescu”, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gabriela Isopencu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Mihaela Cîlțea-Udrescu
- Department of Biotechnologies, Bioresources and Bioproducts for Bioeconomy, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei Street, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- Department of Heterogeneous Systems, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei Street, 060021 Bucharest, Romania
| | - Anicuta Stoica-Guzun
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| |
Collapse
|