1
|
Xiong S, Dong J, Wang W, Zheng G, Wu N, Xie J, Wang R, He X, Li J. The structural characteristics of a pectic polysaccharide from Choerospondias axillaris fruit and its immunomodulatory effect on cyclophosphamide-induced immunosuppressed mice. Int J Biol Macromol 2025; 308:142575. [PMID: 40174828 DOI: 10.1016/j.ijbiomac.2025.142575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
This study aimed to elucidate the structure of a polysaccharide from Choerospondias axillaris fruit (CAP) and to evaluate the immunomodulatory effect against cyclophosphamide (CTX)-induced immunosuppression mice. The solution of CAP exhibited non-Newtonian pseudoplastic fluid behavior. The backbone of CAP was defined as →2)-α-L-Rhap-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-GalpA-(1 → [4)-α-D-GalpA-(1]5→, with side chains attached at the O-4 and O-3 positions, demonstrating that CAP is a pectic polysaccharide with partial methyl esterification. Administration of CAP improved immune organ indices, reduced levels of inflammation cytokines, and diminished oxidative stress of the immunosuppression mice. Furthermore, CAP significantly promoted the expression of intestinal barrier proteins (Claudin-1, Occludin and ZO-1). Additionally, CAP markedly up-regulated the phosphorylation levels of ERK1/2, p38, IκBα and p65 in the colon tissue, suggesting that CAP might alleviate intestinal inflammation by modulating MAPK/NF-κB signaling pathway. Moreover, CAP could restore the abundance of probiotic species (Lactobacillus and Bacteroides), while decreasing pathogenic species (Oscillospira and Helicobacter). These findings underscore the substantial immunomodulatory potential of CAP.
Collapse
Affiliation(s)
- Shiyi Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinjiao Dong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nansheng Wu
- Choerospondias Axillaris Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingjing Xie
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ruiling Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaojin He
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingen Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Li C, Gao H, Yin C, Liu M, Fan X, Shi D, Yao F, Li J, Liu Q, Wen J, Qiu J, Hu G. Physicochemical, antioxidant, gastrointestinal digestion and probiotic growth promoting properties of water and alkali extracted polysaccharides from Schizophyllum commune. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3787-3797. [PMID: 39907041 DOI: 10.1002/jsfa.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Schizophyllum commune is a traditional edible and medicinal mushroom that has been successfully artificially cultivated in China. Polysaccharides from S. commune have attracted much attention because of their bioactivity. The present study aimed to investigate the physicochemical, gastrointestinal digestion and probiotic growth promoting properties of water extracted polysaccharides (WSP) and alkali extracted polysaccharides (WSP) from S. commune. RESULTS The extraction rates and the total sugar contents of WSP and ASP were 11.97% and 14.36% and 57.71 g kg-1 and 52.34 g kg-1, respectively. The main monosaccharides of WSP are glucose and mannose, whereas glucose, mannose and galacturonic acid are the main monosaccharides of ASP. Although the molecular weight of WSP is greater than that of ASP, both WSP and ASP show the typical absorption peaks of polysaccharides and a triple helix structure. WSP shows a coarse granular microstructure, whereas ASP presents a dense porous microstructure. Moreover, WSP shows typical Newtonian fluid behavior, whereas ASP exhibits typical non-Newtonian fluid behavior. WSP presents better thermal stability and antioxidant properties than that of ASP. Both WSP and ASP have good hydrolysis resistance in vitro simulated digestion, but ASP shows better hydrolysis resistance. Both WSP and ASP can promote the growth of probiotic, but the promoting growth effect depends on the strain of the probiotic. CONCLUSION In sum, WSP shows better physicochemical properties, but ASP has more potential to be an excellent prebiotic. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Hong Gao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Research Center of Under-Forest Economy in Hubei Province, Wuhan, China
| | - Chaomin Yin
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mengfan Liu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiuzhi Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fen Yao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jiangtao Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qiongxiang Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Wen
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Jianhui Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
3
|
Zhang J, Zhang Y, Gu M, Wang Y, Yu R, Weng L, Zhao C, Zhao M. Comparative study of physicochemical properties, antioxidant activity, antitumor activity and in vitro fermentation prebiotic properties of Polyporus umbellatus (Pers.) Fries polysaccharides at different solvent extractions. Int J Biol Macromol 2025; 306:141506. [PMID: 40032091 DOI: 10.1016/j.ijbiomac.2025.141506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Polyporus umbellatus (Pers.) Fries (PU), a medicinal fungus, contains polysaccharides (PUPs) as its primary bioactive components. In this paper, physicochemical properties, biological activities and in vitro fermentation prebiotic properties of PUPs, extracted by 90 °C hot water (PUP-W), 0.9 % NaCl (PUP-N), citric acid (PUP-S) and 0.1 M NaOH (PUP-A) were compared. The PUPs were composed of multiple monosaccharides, with significant differences in chemical composition and structure. The extracted PUPs demonstrated notable antioxidant, antitumor and prebiotic activities. With the highest yield (2.96 ± 0.12), PUP-A exhibited better biological activities due to its small molecular weight. The antioxidant ability (clearing DPPH (IC50 = 0.64) and ABTS free radicals (IC50 = 1.23)) of PUP-A was strong, so was the ability of ROS clearing. PUP-A significantly decreased the cell survival rate of HepG2 (IC50 = 1090). In terms of prebiotic properties, both PUP-N and PUP-A showed substantial promoting effects on some beneficial bacteria, like Bacteroidetes at the phylum level and Lactobacillus at the genus level. In summary, our study suggests that alkali is the better solvent and provides new insights into the relationship between the structure, biological activities, and gut microbiota of PUPs, laying the foundation for better development of the role of PU.
Collapse
Affiliation(s)
- Jiayi Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Mingxuan Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yingjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Ruonan Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Ling Weng
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Wang Y, Hu Q, Chen B, Ma D. Effects of Liupao Tea with Different Years of Aging on Glycolipid Metabolism, Body Composition, and Gut Microbiota in Adults with Obesity or Overweight: A Randomized, Double-Blind Study. Foods 2025; 14:866. [PMID: 40077569 PMCID: PMC11898661 DOI: 10.3390/foods14050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Liupao tea (LPT) is a traditionally fermented dark tea from Guangxi, China and the effects of different aging periods of LPT on metabolic health remain inadequately explored. METHODS This randomized, double-blind, longitudinal study enrolled 106 adults with obesity or overweight who were assigned to consume LPT of different ages over a 90-day period. Participants were randomly divided into four groups, each consuming LPT that had been aged for 1 year, 4 years, 7 years, or 10 years. The metabolic parameters, body composition, and gut microbiota were assessed at baseline and after the 90-day intervention. RESULTS All LPT groups experienced significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP), with the 10-year-aged group showing the most notable SBP decrease (p < 0.001). Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels decreased significantly in the 1-, 4-, and 10-year-aged groups (p < 0.05), while high-density lipoprotein cholesterol (HDL-C) increased in the 7-year-aged group (p < 0.05). Body weight, body fat mass (BFM), body mass index (BMI), waist circumference (WC), body fat percentage (BFP), and visceral fat area (VFA) significantly declined across all groups (p < 0.05). Gut microbiota analysis showed changes in specific genera, though overall diversity remained stable. No significant differences were found in metabolic or microbiota outcomes between the different aged groups. CONCLUSIONS LPT consumption effectively improves blood pressure, lipid profiles, and body composition in adults with obesity without adverse liver effects. The aging duration of LPT does not significantly alter these health benefits, challenging the belief that longer-aged LPT is superior.
Collapse
Affiliation(s)
| | | | | | - Defu Ma
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China (Q.H.)
| |
Collapse
|
5
|
Yin D, Zhong Y, Liu H, Hu J. Lipid metabolism regulation by dietary polysaccharides with different structural properties. Int J Biol Macromol 2024; 270:132253. [PMID: 38744359 DOI: 10.1016/j.ijbiomac.2024.132253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Lipid metabolism plays an important role in energy homeostasis maintenance in response to stress. Nowadays, hyperlipidemia-related chronic diseases such as obesity, diabetes, atherosclerosis, and fatty liver pose significant health challenges. Dietary polysaccharides (DPs) have gained attention for their effective lipid-lowering properties. This review examines the multifaceted mechanisms that DPs employ to lower lipid levels in subjects with hyperlipidemia. DPs could directly inhibit lipid intake and absorption, promote lipid excretion, and regulate key enzymes involved in lipid metabolism pathways, including triglyceride and cholesterol anabolism and catabolism, fatty acid oxidation, and bile acid synthesis. Additionally, DPs indirectly improve lipid homeostasis by modulating gut microbiota composition and alleviating oxidative stress. Moreover, the lipid-lowering mechanisms of particular structural DPs (including β-glucan, pectin, glucomannan, inulin, arabinoxylan, and fucoidan) are summarized. The relationship between the structure and lipid-lowering activity of DPs is also discussed based on current researches. Finally, potential breakthroughs and future directions in the development of DPs in lipid-lowering activity are discussed. The paper could provide a reference for further exploring the mechanism of DPs for lipid regulations and utilizing DPs as lipid-lowering dietary ingredients.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Huan Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
6
|
Feng X, Deng H, Huang L, Teng J, Wei B, Xia N, Pang B. Degradation of Cell Wall Polysaccharides during Traditional and Tank Fermentation of Chinese Liupao Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4195-4206. [PMID: 38354398 DOI: 10.1021/acs.jafc.3c07447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The increase of polysaccharides in the dark tea pile process is thought to be connected to the cell wall polysaccharides' breakdown. However, the relationship between tea polysaccharides (TPSs) and tea cell wall polysaccharides has not been further explored. In this study, the structural changes in the cell wall polysaccharides [e.g., cellulose, hemicellulose (HC), and pectin] in Liupao tea were characterized before and after traditional fermentation and tank fermentation. Additionally, the degradation mechanism of tea cell wall polysaccharides during fermentation was assessed. The results showed that cellulose crystallinity decreased by 11.9-49.6% after fermentation. The molar ratio of monosaccharides, such as arabinose, rhamnose, and glucose in HC, was significantly reduced, and the molecular weight decreased. The esterification degree and linearity of water-soluble pectin (WSP) were reduced. TPS content increases during pile fermentation, which may be due to HC degradation and the increase in WSP caused by cell wall structure damage. Microorganisms were shown to be closely associated with the degradation of cell wall polysaccharides during fermentation according to correlation analyses. Traditional fermentation had a greater effect on the cellulose structure, while tank fermentation had a more noticeable impact on HC and WSP.
Collapse
Affiliation(s)
- Xiang Feng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Haichao Deng
- Baihui Pharmaceutical Group Co, Ltd, Nanning, Guangxi 530003, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Bowen Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
7
|
Feng X, Chen M, Song H, Ma S, Ou C, Li Z, Hu H, Yang Y, Zhou S, Pan Y, Fan F, Gong S, Chen P, Chu Q. A systemic review on Liubao tea: A time-honored dark tea with distinctive raw materials, process techniques, chemical profiles, and biological activities. Compr Rev Food Sci Food Saf 2023; 22:5063-5085. [PMID: 37850384 DOI: 10.1111/1541-4337.13254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Ming Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Zeqing Li
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, P. R. China
| | - Hao Hu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Yunyun Yang
- College of standardization, China Jiliang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
8
|
Wei L, Huang L, Du L, Sun Q, Chen C, Tang J, Teng J, Wei B. Structural Characterization and In Vitro Antioxidant, Hypoglycemic and Hypolipemic Activities of a Natural Polysaccharide from Liupao Tea. Foods 2023; 12:foods12112226. [PMID: 37297468 DOI: 10.3390/foods12112226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
This study extracted and purified a natural polysaccharide (TPS-5) that has a molecular weight of 48.289 kDa from Liupao tea, a typical dark tea with many benefits to human health. TPS-5 was characterized as a pectin-type acidic polysaccharide. It has a backbone composed of → 2,4)- α- L-Rhap-(1) → 4)- α- D-GalAp-(1) →, with a branch composed of → 5)- α- L-Ara-(1 → 5,3)- α- L-Ara-(1 → 3)- β- D-Gal-(1 → 3,6)- β- D-Galp-(1) →. The in vitro biological activity evaluation illustrated that TPS-5 has free radical scavenging, ferric-ion-reducing, digestive enzyme inhibitory, and bile-salt-binding abilities. These results suggest that TPS-5 from Liupao tea has potential applications in functional foods or medicinal products.
Collapse
Affiliation(s)
- Lu Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Institute of Food and Pharmaceutical Science, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lijuan Du
- Institute of Food and Pharmaceutical Science, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Qinju Sun
- Institute of Food and Pharmaceutical Science, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Can Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jie Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Liu T, Zhao M, Zhang Y, Wang Z, Yuan B, Zhao C, Wang M. Integrated microbiota and metabolite profiling analysis of prebiotic characteristics of Phellinus linteus polysaccharide in vitro fermentation. Int J Biol Macromol 2023; 242:124854. [PMID: 37182617 DOI: 10.1016/j.ijbiomac.2023.124854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Phellinus linteus polysaccharide (PLP) had received increasing attention due to its multiple biological activities. Herein, the extraction, characterization and in vitro fermentation of PLP were studied to explore its physiochemical properties and the interaction mechanism between the gut microbiota and PLP. The results obtained demonstrated that PLP was mainly composed of 9 monosaccharides, with three gel chromatographic peaks and molecular weights (Mw) of 308.45 kDa, 13.58 kD and 3.33 kDa, respectively. After 48 h fermentation, the Mw, total sugar, reducing sugar, pH and monosaccharides composition were decreased. Furthermore, PLP regulated the composition of gut microbiota, such as promoting the proliferation of beneficial bacteria such as Bacteroides, Prevotella and Butyricimonas, while preventing the growth of pathogenic bacteria such as Escherichia-Shigella, Morganella and Intestinimonas. Gut microbiota metabolites regulated by PLP such as short-chain fatty acids were the main regulators that impact the host health. Bioinformatics analysis indicated that butyrate, bile acid and purine metabolism were the main metabolic pathways of PLP regulating host health, and the Bacteroides was the key genus to regulate these metabolic pathways. In conclusion, our finding suggested that PLP may be used as a prebiotic agent for human health because of its ability to regulate gut microbiota.
Collapse
Affiliation(s)
- Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Zheyong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Bo Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
10
|
Chen J, Lin B, Zheng FJ, Fang XC, Ren EF, Wu FF, Verma KK, Chen GL. Characterization of the Pure Black Tea Wine Fermentation Process by Electronic Nose and Tongue-Based Techniques with Nutritional Characteristics. ACS OMEGA 2023; 8:12538-12547. [PMID: 37033789 PMCID: PMC10077554 DOI: 10.1021/acsomega.3c00862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Wine is an alcoholic beverage, consisting of several compounds in various ranges of concentrations. Wine quality is usually assessed by a sensory panel of trained personnel. Electronic tongues (e-tongues) and electronic noses (e-noses) have been established in recent years to assess the quality of beverages and foods. Response surface and electronic analysis tools were used to examine the quality of black tea wine. The results indicated the optimum initial sugar level (25 °Brix), yeast addition (0.5%), and fermentation temperature (25 °C) for Golden Peony black tea wine. The black tea wine produced under these conditions with 14.0% vol alcohol has as an orange-red color, full wine and tea flavor, and mild and mellow taste. The sourness of the wine was most affected by fermentation factors-yeast addition, fermentation temperature, and initial sugar level. Alcohols, aldehydes, ketones, and alkanes contributed to most of the volatile components under the influence of yeast addition and fermentation temperature. In contrast, nitrogen oxides, aromatics, and organic sulfides contributed under the influence of the initial sugar level. This study provided a facilitated strategy for obtaining the optimum black tea wine fermentation process through electronic nose and tongue-based techniques. The analysis of wines requires new technologies able to detect various different compounds simultaneously, providing worldwide information about the sample instead of information about specific compounds.
Collapse
Affiliation(s)
- Jing Chen
- Guangxi
South Subtropical Agricultural Research Institute, Longzhou 532400, Guangxi, China
- Institute
of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
| | - Bo Lin
- Institute
of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
- Guangxi
Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530 007, Guangxi, China
| | - Feng-Jin Zheng
- Institute
of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
- Guangxi
Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530 007, Guangxi, China
| | - Xiao-Chun Fang
- Institute
of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
- Guangxi
Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530 007, Guangxi, China
| | - Er-Fang Ren
- Guangxi
Subtropical Crops Research Institute, Guangxi
Subtropical Fruits Processing Research Center of Engineering Technology, Nanning 530001, Guangxi, China
| | - Fei-Fei Wu
- Guangxi
South Subtropical Agricultural Research Institute, Longzhou 532400, Guangxi, China
- Institute
of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
| | - Krishan K. Verma
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs Guangxi Key Laboratory of
Sugarcane Genetic Improvement Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
| | - Gan-Lin Chen
- Institute
of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
- Guangxi
Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530 007, Guangxi, China
- School
of
Chemistry and Chemical Engineering, Guangxi
Minzu University, Nanning 530 006, Guangxi, China
| |
Collapse
|
11
|
Wu G, Gu W, Chen G, Cheng H, Li D, Xie Z. Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|