1
|
Ma S, Cai C, Lu Q, Tan Z. A review of green solvents for the extraction and separation of bioactive ingredients from natural products. Food Chem 2025; 478:143703. [PMID: 40054198 DOI: 10.1016/j.foodchem.2025.143703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/25/2025] [Accepted: 03/01/2025] [Indexed: 04/06/2025]
Abstract
Bioactive substances from natural products are good resources from the pharmaceutical and food industries. Conventional organic solvents are widely used for extracting and separating bioactive substances. Recently, various environmentally friendly solvents have been developed and applied in the separation field to replace conventional organic solvents. This review focuses on environmentally friendly solvents for the extraction and separation technologies that meet the requirements of green chemistry. The classifications, applications, influencing factors, and mechanisms involved in the extraction processes using these green solvents are also discussed. Green solvent-based extraction systems are promising alternatives to traditional organic solvents. Green solvents are mild and non-destructive to the active compounds during their application and have negligible effects on the ecosystem when discharged. The use of green solvents for the extraction and separation of active ingredients in natural products is attracting attention because of their low environmental impact and sustainability.
Collapse
Affiliation(s)
- Shaoping Ma
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Changyong Cai
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qianwen Lu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China,.
| |
Collapse
|
2
|
Domínguez-Rodríguez G, Amador-Luna VM, Castro-Puyana M, Ibáñez E, Marina ML. Sustainable strategies to obtain bioactive compounds from citrus peels by supercritical fluid extraction, ultrasound-assisted extraction, and natural deep eutectic solvents. Food Res Int 2025; 202:115713. [PMID: 39967098 DOI: 10.1016/j.foodres.2025.115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
This work proposes a sustainable sequential extraction of bioactive terpenoids and phenolic compounds from grapefruit, lime, and lemon peels using supercritical CO2 extraction (SC-CO2) and ultrasound-assisted extraction (UAE) with natural deep eutectic solvents (NaDES). NaDES screening demonstrated that Choline Chloride:Tartaric acid (1:2) for grapefruit and lemon peels, and Choline Chloride:Glycerol (1:2) for lime peels with 50% water yielded the highest phenolic contents. Cryogenic grinding (CR) and SC-CO2 pretreatments before UAE-NaDES did not improve phenolic recovery compared to direct UAE-NaDES. Pretreatments reduced particle size and increased surface tension, lowering UAE-NaDES efficiency. The direct UAE-NaDES extracts showed the highest phenolic diversity, with naringin in grapefruit and hesperidin in lime and lemon peels as the major compounds identified by HPLC-QTOF-MS. However, SC-CO2 obtained before UAE-NaDES presented higher anticholinergic capacity and a rich terpenoid profile identified by GC-Q-MS. Results demonstrate the potential of this sequential strategy for a more holistic exploitation of citrus peels.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Universidad de Alcalá Departamento de Química Analítica Química Física e Ingeniería Química Ctra. Madrid-Barcelona Km. 33.600 28871 Alcalá de Henares (Madrid) Spain; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9 28049 Madrid, Spain
| | - Victor M Amador-Luna
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9 28049 Madrid, Spain
| | - María Castro-Puyana
- Universidad de Alcalá Departamento de Química Analítica Química Física e Ingeniería Química Ctra. Madrid-Barcelona Km. 33.600 28871 Alcalá de Henares (Madrid) Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9 28049 Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá Departamento de Química Analítica Química Física e Ingeniería Química Ctra. Madrid-Barcelona Km. 33.600 28871 Alcalá de Henares (Madrid) Spain.
| |
Collapse
|
3
|
Zhou C, Adeyanju AA, Nwonuma CO, Inyinbor AA, Alejolowo OO, Al-Hamayda A, Akinsemolu A, Onyeaka H, Olaniran AF. Physical field-assisted deep eutectic solvent processing: A green and water-saving extraction and separation technology. J Food Sci 2024; 89:8248-8275. [PMID: 39668112 DOI: 10.1111/1750-3841.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Extraction of organic and bioactive compounds from plant materials with the traditional organic solvents aided by water or oil bath heating is not sustainable, because it consumes a lot of energy, time, water/oil, solvents, and results in lower yield. This review discusses deep eutectic solvent (DES) as a green solvent, physical field technology (PFT) as a water-saving and green technology, and how the coupling of PFT (ultrasound [US], microwave [MW], infrared [IR]) to DES will improve the yield and quality of protein, polysaccharides, polyphenols, pectin, and terpenoids extracted from plant materials. Ultrasonication increases DES extraction efficiency via cavitation dislodgement and pores creation. IR coupling to DES enhances the extraction yield of polyphenols and the antioxidant and antiradical activity. MW improves DES extraction yield, reduces energy consumption, operational cost, and compound degradation, and is inferred to be the greenest technology.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Adeyemi Ayotunde Adeyanju
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Nigeria
| | | | - Asmaa Al-Hamayda
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, UAE
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Food Science and Nutrition Programme, Food Science and Microbiology Department, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
4
|
Ristivojević P, Krstić Ristivojević M, Stanković D, Cvijetić I. Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective. Molecules 2024; 29:4717. [PMID: 39407645 PMCID: PMC11478183 DOI: 10.3390/molecules29194717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Collapse
Affiliation(s)
- Petar Ristivojević
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Maja Krstić Ristivojević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Dalibor Stanković
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Ilija Cvijetić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| |
Collapse
|
5
|
Liu J, Guo X, Miao Q, Ji X, Liang Y, Tong T. Deep eutectic solvent extraction of myricetin and antioxidant properties. RSC Adv 2024; 14:18126-18135. [PMID: 38854824 PMCID: PMC11155444 DOI: 10.1039/d4ra01438c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
In this study, a response surface method (RSM) was used to optimise the ultrasonic-assisted deep eutectic solvent (DES) extraction of myricetin from myricetin leaves. The results demonstrated that the DES-5 (choline chloride-oxalic acid) system exhibited better extraction results than the other seven DESs prepared. The optimum extraction conditions for myricetin were a DES-5 system with 19% water content of DES, a liquid-to-solid ratio of 37 : 1 mL g-1, an extraction time of 45 min, and an extraction temperature of 72 °C. Under these conditions, the extraction amount of myricetin was 22.47 mg g-1. To optimise the extraction process, the crude myricetin extract was purified, and the optimal conditions were as follows: an AB-8 macroporous adsorption resin was used with an anhydrous ethanol desorption agent. The adsorption rate was 1 BV per h (bed volume per hour), the desorption rate was 1 BV per h, and the desorption capacity was 2 BV (bed volume). The antioxidant properties of the myricetin were also investigated. The results demonstrated that, with an increase in concentration, the scavenging rates of DPPH and ˙OH free radicals increased. Compared to Vc, myricetin had a better scavenging ability for DPPH free radicals, whereas purified myricetin had a better antioxidant effect. At the same concentration, the radical-scavenging rate of the ˙OH radical was slightly higher in myricetin purified by the macroporous adsorption resin than in Vc, and that of the unpurified myricetin was the smallest. Myricetin was purified using a macroporous adsorption resin to improve its antioxidant properties.
Collapse
Affiliation(s)
- Junhai Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology Hanzhong 723000 P.R. China
| | - Xiaosha Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology Hanzhong 723000 P.R. China
| | - Qiaowei Miao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology Hanzhong 723000 P.R. China
| | - Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology Hanzhong 723000 P.R. China
| | - Yinku Liang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology Hanzhong 723000 P.R. China
| | - Tianjiao Tong
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology Hanzhong 723000 P.R. China
| |
Collapse
|
6
|
Wang W, Lin L, Zhao M. Simultaneously efficient dissolution and structural modification of chrysanthemum pectin: Targeting at proliferation of Bacteroides. Int J Biol Macromol 2024; 267:131469. [PMID: 38604432 DOI: 10.1016/j.ijbiomac.2024.131469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/25/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Pectic polysaccharide is a bioactive ingredient in Chrysanthemum morifolium Ramat. 'Hangbaiju' (CMH), but the high proportion of HG domain limited its use as a prebiotic. In this study, hot water, cellulase-assisted, medium-temperature alkali, and deep eutectic solvent extraction strategies were firstly used to extract pectin from CMH (CMHP). CMHP obtained by cellulase-assisted extraction had high purity and strong ability to promote the proliferation of Bacteroides and mixed probiotics. However, 4 extraction strategies led to general high proportion of HG domain in CMHPs. To further enhance the dissolution and prebiotic potential of CMHP, pectinase was used alone and combined with cellulase. The key factor for the optimal extraction was enzymolysis by cellulase and pectinase in a mass ratio of 3:1 at 1 % (w/w) dosage. The optimal CMHP had high yield (15.15 %), high content of total sugar, and Bacteroides proliferative activity superior to inulin, which was probably due to the cooperation of complex enzyme on the destruction of cell wall and pectin structural modification for raised RG-I domain (80.30 %) with relatively high degree of branching and moderate HG domain. This study provided a green strategy for extraction of RG-I enriched prebiotic pectin from plants.
Collapse
Affiliation(s)
- Wenying Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| |
Collapse
|