1
|
Aradwad P, Raut S, Abdelfattah A, Rauh C, Sturm B. Brewer's spent grain: Unveiling innovative applications in the food and packaging industry. Compr Rev Food Sci Food Saf 2025; 24:e70150. [PMID: 40172248 PMCID: PMC11963836 DOI: 10.1111/1541-4337.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
Brewer's spent grain, a byproduct of beer brewing, is often discarded as waste, leading to environmental concerns. However, the growing interest in sustainability and the circular bioeconomy has prompted research into its use in food and packaging industries. The objective of this review paper is to explore recent advancements in food applications, focusing on various aspects such as processing innovations, food properties, sensory acceptability, and safety considerations. The paper highlights the role of functional bioactive compounds of BSG in food and evaluates their pharmacological activities. Additionally, it investigates the development of sustainable food-packaging materials derived from BSG, discussing their applications, challenges, and potential for eco-friendly packaging solutions. The inclusion of BSG significantly impacts the food matrix during processing, which can negatively affect the physical, rheological, and textural properties and sensory acceptability. To enhance BSGs desirability as a food ingredient, various approaches have been employed, including drying, fermentation, extrusion, and modifications using enzyme treatments, dough enhancers, and texture modifiers. BSG-derived biodegradable films and coatings demonstrate a promising potential for food-packaging applications, offering desirable properties such as sustainability and effective performance. Key challenges for adopting BSG-based solutions in food and packaging industries include limited consumer awareness, commercialization strategies, and the need for life cycle assessment and life cycle costing for successful integration and widespread adoption.
Collapse
Affiliation(s)
- Pramod Aradwad
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- Indian Council of Agricultural Research, Krishi Bhavan, Dr Rajendra Prasad RdNew DelhiIndia
| | - Sharvari Raut
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- NETZSCH Grinding & Dispersing GmbH, Sedanstraße 70SelbGermany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
| | - Cornelia Rauh
- Institute of Food Biotechnology and Food Process EngineeringTechnische Universität, Straße des 17BerlinGermany
| | - Barbara Sturm
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural SciencesHumboldt‐Universität zu Berlin, Hinter der Reinhardtstr. 6–8BerlinGermany
| |
Collapse
|
2
|
Nicolai M, Palma ML, Reis R, Amaro R, Fernandes J, Gonçalves EM, Silva M, Lageiro M, Charmier A, Maurício E, Branco P, Palma C, Silva J, Nunes MC, Fernandes PCB, Pereira P. Assessing the Potential of Brewer's Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles. Foods 2025; 14:95. [PMID: 39796385 PMCID: PMC11719959 DOI: 10.3390/foods14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Brewers' spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber and protein content. This work explored the effect of replacing wheat flour with BSG at 50% and 75% in cookie formulations, focusing on physical, chemical, and sensory properties. The dietary fiber, lipid, and protein content of cookies improved considerably with the highest incorporation of BSG, increasing from 6.37% to 15.54%, 9.95% to 13.06%, and 9.59% to 12.29%, respectively. Conversely, moisture and water activity decreased from 11.03% to 3.37% and 0.742 to 0.506, respectively, forecasting a lower risk of microbial contamination and increased shelf-life. The incorporation of BSG in cookies resulted in decreased brightness and increased hardness, from 40 N to 97 N. Moreover, colorimetric shifts among the control cookies and the two BSG-rich formulations could be easily identified by an untrained observer. Sensory evaluation showed that cookies with 50% BSG retained acceptable sensory characteristics, suggesting potential for further development. Overall, BSG enhances the nutritional profile of cookies with no excessive detrimental impact on sensory features.
Collapse
Affiliation(s)
- Marisa Nicolai
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
| | - Maria Lídia Palma
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
| | - Ricardo Reis
- EPCV, School of Psycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.R.)
| | - Rúben Amaro
- EPCV, School of Psycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.R.)
| | - Jaime Fernandes
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
| | - Manuela Lageiro
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Adília Charmier
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
| | - Elisabete Maurício
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
| | - Patrícia Branco
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Carla Palma
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal;
| | - Joaquim Silva
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
| | - Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Pedro C. B. Fernandes
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paula Pereira
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
- EPCV, School of Psycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.R.)
- CERENA Center for Natural Resources and Environment, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Tkaczewska J, Mungure T, Warner R. Is it still meat? The effects of replacing meat with alternative ingredients on the nutritional and functional properties of hybrid products: a review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39579157 DOI: 10.1080/10408398.2024.2430750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Consumer interest in a shift toward moderating animal products in their diets (flexitarian) is constantly increasing. One way to meet this consumer demand is through hybrid meat products, defined as those in which a portion of the meat is substituted by plant protein. This review article aims to analyze literature regarding the impact of replacing meat proteins with other alternative proteins on the functional and nutritional properties of hybrid products. Different food matrices created by hybrid products have impact on the digestive processes and outcomes in vitro and in vivo, and the bioavailability of protein, lipid, and mineral nutrients is modified, hence these aspects are reviewed. The functional properties of hybrid products change with regard to type of alternative protein source used. In hybrid products, deficiencies in amino acids in alternative proteins are balanced by amino acids from meat proteins, resulting in wholesome products. Additionally, animal protein degrades into peptides in the gut which bind non-animal iron and increase the availability of iron from the alternative protein material. This relationship may support the development of hybrid products offering products with increased iron bioavailability and a previously unseen beneficial nutritional composition. The effects of alternative protein addition in hybrid meat products on protein and mineral digestibility remains unclear. More research is required to clarify the interaction of the protein-food matrix as well as its effects on digestibility. Very little research has been conducted on the oxidative stability and microbiological safety of hybrid products.
Collapse
Affiliation(s)
- Joanna Tkaczewska
- Department of Animal Product Technology, University of Agriculture in Kraków, Poland Kraków
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Tanyaradzwa Mungure
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| | - Robyn Warner
- School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
4
|
Liu S, Deng Y, Liu H, Fu Z, Wang Y, Zhou M, Feng Z. Causal Relationship between Meat Intake and Biological Aging: Evidence from Mendelian Randomization Analysis. Nutrients 2024; 16:2433. [PMID: 39125314 PMCID: PMC11313912 DOI: 10.3390/nu16152433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Existing research indicates that different types of meat have varying effects on health and aging, but the specific causal relationships remain unclear. This study aimed to explore the causal relationship between different types of meat intake and aging-related phenotypes. This study employed Mendelian randomization (MR) to select genetic variants associated with meat intake from large genomic databases, ensuring the independence and pleiotropy-free nature of these instrumental variables (IVs), and calculated the F-statistic to evaluate the strength of the IVs. The validity of causal estimates was assessed through sensitivity analyses and various MR methods (MR-Egger, weighted median, inverse-variance weighted (IVW), simple mode, and weighted mode), with the MR-Egger regression intercept used to test for pleiotropy bias and Cochran's Q test employed to evaluate the heterogeneity of the results. The findings reveal a positive causal relationship between meat consumers and DNA methylation PhenoAge acceleration, suggesting that increased meat intake may accelerate the biological aging process. Specifically, lamb intake is found to have a positive causal effect on mitochondrial DNA copy number, while processed meat consumption shows a negative causal effect on telomere length. No significant causal relationships were observed for other types of meat intake. This study highlights the significant impact that processing and cooking methods have on meat's role in health and aging, enhancing our understanding of how specific types of meat and their preparation affect the aging process, providing a theoretical basis for dietary strategies aimed at delaying aging and enhancing quality of life.
Collapse
Affiliation(s)
| | | | | | | | | | - Meijuan Zhou
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| |
Collapse
|
5
|
Kolev N, Vlahova-Vangelova D, Balev D, Dragoev S, Dimov K, Petkov E, Popova T. Effect of the Addition of Soybean Protein and Insect Flours on the Quality of Cooked Sausages. Foods 2024; 13:2194. [PMID: 39063278 PMCID: PMC11276549 DOI: 10.3390/foods13142194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to assess the effect of the addition (2%) of soybean protein (SP) and insect flours derived from house crickets (Acheta domesticus, HCF) and yellow mealworm (Tenebrio molitor, YMF) in cooked sausages. The technological characteristics of the batter, the chemical composition of the sausages, their technological traits and lipid stability during refrigerated storage, as well as their sensory properties, were investigated. The SP, HCF and YMF batters displayed higher pH (p = 0.0025) and stability (p < 0.0001) but a darker colour (p < 0.0001) than the control samples. The addition of SP increased the plasticity of the batter (p = 0.0017), while YMF decreased its structural strength (p = 0.0274). Higher pH and darker colour were detected in SP-, HCF- and YMF-containing sausages; however, the effect of the alternative proteins depended on the duration of storage. The plasticity decreased in the insect-containing sausages (p = 0.0010) and increased over time (p = 0.0136), whereas the elasticity was lower in the YMF group (p < 0.0001). The protein and fat contents were higher (p < 0.0001) in the sausages containing alternative protein. TBARS content decreased over time in these groups. The HCF and YMF sausages received lower scores for their appearance, colour, texture, flavour and taste, suggesting the need for further technological interventions to make such products more attractive to consumers.
Collapse
Affiliation(s)
- Nikolay Kolev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Desislava Vlahova-Vangelova
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Desislav Balev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Stefan Dragoev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Krasimir Dimov
- Agricultural Academy, Institute of Cryobiology and Food Technologies, 53 Cherni vrah Blvd, 1407 Sofia, Bulgaria;
| | - Evgeni Petkov
- Agricultural Academy, Institute of Animal Science-Kostinbrod, Pochivka St, 2232 Kostinbrod, Bulgaria;
| | - Teodora Popova
- Agricultural Academy, Institute of Animal Science-Kostinbrod, Pochivka St, 2232 Kostinbrod, Bulgaria;
| |
Collapse
|
6
|
Krawczyk A, Fernández-López J, Zimoch-Korzycka A. Insect Protein as a Component of Meat Analogue Burger. Foods 2024; 13:1806. [PMID: 38928748 PMCID: PMC11203044 DOI: 10.3390/foods13121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Researchers are exploring solutions to meet the growing demand for protein due to the expected increase in global population by 2050. Interest in alternative protein sources like insects has risen, driven by concerns about environmental impact and the need for sustainable food production. This study aimed to develop and evaluate the physicochemical properties of soy-protein-based burgers enriched with insect protein from Alphitobius diaperinus. Three formulations were developed: a control (B0) and burgers with 5% (B5) and 10% (B10) insect protein-Whole Buffalo Powder (WBP). The results showed that adding insect protein decreased the burger analogue's pH. A clear trend was observed of increasing total lipids and saturated fatty acids (SFA) and decreasing monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) as the WBP concentration increased from 0% to 10%. No significant differences with increasing WBP concentration in the protein content of the burger analogue, as well as the cooking yield, were noted. The WBP addition had a notable effect on the color change, especially a decrease in brightness (L*). It was shown that as the WBP concentration increased, there were no significant differences in the texture profile of the burger analogues. The formulation with 5% WBP concentration was the most acceptable in sensory analysis.
Collapse
Affiliation(s)
- Anna Krawczyk
- Department of Functional Food Products Development, Faculty of Food Science and Biotechnology, Wrocław University of Environmental and Life Sciences, 37 Chelmonskiego Str., 51-630 Wrocław, Poland;
| | - Juana Fernández-López
- IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation Miguel Hernández University (CIAGRO-UMH), Ctra. Beniel km 3.2, 03312 Orihuela, Spain;
| | - Anna Zimoch-Korzycka
- Department of Functional Food Products Development, Faculty of Food Science and Biotechnology, Wrocław University of Environmental and Life Sciences, 37 Chelmonskiego Str., 51-630 Wrocław, Poland;
| |
Collapse
|
7
|
Jankauskienė A, Kiseliovienė S, Aleknavičius D, Miliūnaitė I, Kerzienė S, Gaižauskaitė Ž, Juknienė I, Zaviztanavičiūtė P, Kabašinskienė A. Innovative Applications of Tenebrio molitor Larvae in the Production of Sustainable Meat Sausages: Quality and Safety Aspects. Foods 2024; 13:1451. [PMID: 38790751 PMCID: PMC11119166 DOI: 10.3390/foods13101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
With the world's population continuing to grow, ensuring sustainable protein sources for everyone is becoming increasingly challenging. Despite meat being considered unsustainable, people find it challenging to abstain from consuming it. However, one solution to this dilemma could be the incorporation of mealworms into conventional meat products, i.e., sausages. The incorporation of mealworms into sausage formulations appears to shift the fatty acid profile towards higher levels of monounsaturated fats and polyunsaturated fatty acids (PUFAs), particularly omega-3s, potentially enhancing the nutritional value and offering health benefits. Therefore, our study aimed to improve the nutritional value and safety parameters of traditional sausages by enriching them with the flour of mealworm larvae. For this purpose, the larvae were reared on a sustainable substrate with brewery by-products, brewer's yeast, and carrots. They were used frozen and freeze-dried in sausage recipes, replacing pork in different proportions. The analysis of the product's chemical safety parameters (biogenic amines, nitrates and nitrites, volatile fatty acids (FA), and peroxide) and nutritional value (including collagen, cholesterol, amino acids, FA, and hydroxyproline) was carried out in an accredited laboratory. The results of our study have demonstrated that the incorporation of mealworms into sausages, particularly through freeze-drying, increased fat content and enhanced the profile of FA, including omega-3s while reducing protein and cholesterol levels, and altering collagen content, suggesting improved nutritional value and potential health benefits without compromising the safety of the product. Therefore, we are highlighting that the addition of mealworms influences the quality of amino acids positively and maintains biogenic amine levels within safe limits, alongside a negligible impact on nitrates and nitrites and a reduction in peroxide values. These findings indicate an overall improvement in sausage quality and safety without compromising safety.
Collapse
Affiliation(s)
- Agnė Jankauskienė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (A.J.); (I.M.); (I.J.); (P.Z.)
| | - Sandra Kiseliovienė
- Food Institute, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania; (S.K.); (Ž.G.)
| | | | - Ieva Miliūnaitė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (A.J.); (I.M.); (I.J.); (P.Z.)
| | - Sigita Kerzienė
- Department of Physics, Mathematics and Biophysics, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania;
| | - Žydrūnė Gaižauskaitė
- Food Institute, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania; (S.K.); (Ž.G.)
| | - Ignė Juknienė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (A.J.); (I.M.); (I.J.); (P.Z.)
| | - Paulina Zaviztanavičiūtė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (A.J.); (I.M.); (I.J.); (P.Z.)
| | - Aistė Kabašinskienė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (A.J.); (I.M.); (I.J.); (P.Z.)
| |
Collapse
|
8
|
Grasso S, Estévez M, Lorenzo JM, Pateiro M, Ponnampalam EN. The utilisation of agricultural by-products in processed meat products: Effects on physicochemical, nutritional and sensory quality - Invited Review. Meat Sci 2024; 211:109451. [PMID: 38350244 DOI: 10.1016/j.meatsci.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Several plant-based materials are discarded by the food industry due to oversupply, lack of transport, and inappropriate storage. These materials contain valuable essential micronutrients such as minerals, vitamins and bioactive components (e.g., polyphenol, tocopherols, ascorbic acid, carotenoids) with antioxidant, antimicrobial, and anti-inflammatory effects, among others. In the context of making our agriculture-food based economy more circular and sustainable, and to develop foods with clean labels and less E-numbers, fruits, vegetables, yams, cereal distillers, oilseeds and other plant by-products could be utilised and upcycled back into new food formulations. Meat products are a particularly suitable matrix for this purpose, due to their susceptibility to lipid and protein oxidation and microbial spoilage (which shorten their shelf life). This review brings together the latest (2020-23) reformulation efforts, preservative methods and other innovative pathways, including studies on by-products as plant-based additives and bio-actives. It will cover the use of plant-based by-products as natural additives into production of processed meat products such as burgers, fermented meats and sausages, produced from ruminant and monogastric animals (except poultry). The extraction methods, inclusion levels, processing methods used and the quality of the resulting meat products will be reported, including preservative effects (microbial growth, oxidative stability and shelf life) and effects on instrumental, nutritional and sensory quality. Furthermore, it will also critically discuss the gaps identified, recommendation of the most promising ingredients for quality enhancement, and provide directions for future research.
Collapse
Affiliation(s)
- Simona Grasso
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mario Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, Universidad de Extremadura, 10003 Cáceres, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Eric N Ponnampalam
- School of Agriculture, Food and Ecosystems Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Agrifeed Animal Production, 9 Poseidon Close, Mill Park, Victoria 3082, Australia
| |
Collapse
|
9
|
Talens C, Lago M, Illanes E, Baranda A, Ibargüen M, Santa Cruz E. Development of the lexicon, trained panel validation and sensory profiling of new ready-to-eat plant-based " meatballs" in tomato sauce. OPEN RESEARCH EUROPE 2024; 2:145. [PMID: 38434196 PMCID: PMC10907879 DOI: 10.12688/openreseurope.15360.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Background Providing educational content for children and parents can promote healthy nutritional habits. During the TITAN project, a pilot digital contest where participants have to developed ready-to-eat meatballs in sauce, using only plant-based ingredients, will be tested. The objective of this study was to develop the lexicon needed to objectively assess the sensory profile of this product. Methods Eight judges were recruited and trained. Thirteen 1-hour sessions took place over three months. The steps followed were the selection of commercial reference, generation of descriptors, training of the panel, validation of the trained panel and product characterisation. The judges chose one commercial reference (using simple hedonic evaluation) to serve as a reference. The accepted intensity scale for the generated descriptors was from 0 (low intensity) to 9 (very intense). To test the first versions of the game, food product developers involved in the project, acted as participants, and used a mix of lentils, quinoa, and oats to enhance the commercial version. R-project software was used to analyse the performance of the panel and the sensory profiles. Results A glossary with 14 descriptors was generated. The discriminatory capacity of the panel was confirmed by examining the significance of the product effect (p < 0.05). The product-judge interaction was not significant (p > 0.05) for most of the evaluated attributes, indicating a good degree of panel agreement. Overall, the panel was considered reproducible after 9 sessions. Although the appearance, firmness, fragility and chewiness were considered similar to the reference, juiciness and taste (understood as meaty flavour) of the new product were deemed improved. Conclusions According to the panel, two of the most appreciated attributes associated with meat analogues, juiciness and taste, were improved compared to the commercial reference. Therefore, the first approach for further development of the contest/game was validated.
Collapse
Affiliation(s)
- Clara Talens
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Maider Lago
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Eder Illanes
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Ana Baranda
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Mónica Ibargüen
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Elena Santa Cruz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| |
Collapse
|
10
|
López-Gámez G, Del Pino-García R, López-Bascón MA, Verardo V. From feed to functionality: Unravelling the nutritional composition and techno-functional properties of insect-based ingredients. Food Res Int 2024; 178:113985. [PMID: 38309922 DOI: 10.1016/j.foodres.2024.113985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
In recent years, there has been a growing interest in using insects as a sustainable resource for biorefinery processes. This emerging field aims to convert insect biomass into valuable products while minimizing waste. The integration of emerging green technologies and the efficient extraction of high-value compounds from insects offer promising avenues for addressing the growing demand for sustainable food production and resource utilization. The review examines the impact of dietary modifications on the nutritional profile of insects. It highlights the potential for manipulating insect feed to optimize protein quality, amino acid profile, lipid content and fatty acid composition. Additionally, innovative green processing technologies such as ultrasound, high pressure processing, pulsed electric fields, cold plasma and enzymatic hydrolysis are discussed for their ability to enhance the extraction and techno-functional properties of insect-based ingredients. The review finds that dietary modifications can impact the nutritional composition of insects, allowing the customization of their nutrient content. By optimizing the insect feed, it is possible to increase the quantity and improve the quality of essential nutrients like proteins or lipids in the derived ingredients. Moreover, alternative processing technologies can improve the techno-functional properties (e.g., solubility, water and oil holding capacities, among others) of insect-based ingredients by modifying proteins' conformation. By harnessing these strategies, researchers and industry professionals can unlock the full potential of insects as a sustainable and nutritional food source, paving the way for innovative insect-based food products.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - Raquel Del Pino-García
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - María Asunción López-Bascón
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - Vito Verardo
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain; Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
11
|
Yang J, Zhou S, Kuang H, Tang C, Song J. Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Crit Rev Food Sci Nutr 2023; 64:10361-10383. [PMID: 37341655 DOI: 10.1080/10408398.2023.2223644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Edible insect products contain high-quality protein and other nutrients, including minerals and fatty acids. The consumption of insect food products is considered a future trend and a potential strategy that could greatly contribute to meeting food needs worldwide. However, insect proteins have the potential to be allergenic to insect consumers. In this review, the nutritional value and allergy risk of insect-derived foods, and the immune responses elicited by insect allergens are summarized and discussed. Tropomyosin and arginine kinase are the most important and widely known insect allergens, which induce Th2-biased immune responses and reduced the activity of CD4+T regulatory cells. Besides, food processing methods have been effectively improving the nutrients and characteristics of insect products. However, limited reviews systematically address the immune reactions to allergens present in edible insect proteins following treatment with food processing technologies. The conventional/novel food processing techniques and recent advances in reducing the allergenicity of insect proteins are discussed in this review, focusing on the structural changes of allergens and immune regulation.
Collapse
Affiliation(s)
- Jing Yang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Shuling Zhou
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Chunhong Tang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Garcia-Fontanals L, Llorente R, Valderrama J, Bravo S, Talens C. Hybrid Spreadable Cheese Analogues with Faba Bean and Mealworm (Tenebrio molitor) Flours: Optimisation Using Desirability-Based Mixture Design. Foods 2023; 12:foods12071522. [PMID: 37048343 PMCID: PMC10094594 DOI: 10.3390/foods12071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Hybrid products could help bridge the gap as new alternative diets emerge in response to the demand for less animal protein, while recent studies suggest that the Western population is not yet ready to fully embrace an alternative protein-based diet. This study used a desirability-based mixture design to model hybrid spreadable cheese analogues (SCAs). The design combined milk protein concentrate (MPC), Tenebrio molitor (IF) and faba bean (FBP) flours, representing 7.1% of the formula. Nine SCAs with different MPC/FBP/IF ratios were formulated. Incorporating the IF negatively impacted the desirable texture properties. The FBP flour improved the texture (increasing firmness and stickiness and decreasing spreadability), but only when combined with MPC. Sensory analysis showed that hybrid SCAs (≤50% MPC) C2, C7 and C9 had a more characteristic cheesy flavour than the commercial plant-based reference, and sample C2 had a texture profile similar to the dairy reference. Samples containing IF (C7 and C9) showed a better flavour profile than that without IF (C2). The SCAs had higher protein and lower saturated fat, starch and sugar content than commercial analogues. The study suggests that incorporating alternative proteins in hybrid products can be an effective approach to reduce animal protein content, specifically dairy, in food formulations.
Collapse
Affiliation(s)
- Laura Garcia-Fontanals
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
- Basque Culinary Centre, Facultad de Ciencias Gastronómicas, Mondragon University, 20009 Donostia-San Sebastián, Spain
| | - Raquel Llorente
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | | | - Sergio Bravo
- Blendhub Innovation Department, San Ginés, 30169 Murcia, Spain
| | - Clara Talens
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
13
|
Ros-Baró M, Sánchez-Socarrás V, Santos-Pagès M, Bach-Faig A, Aguilar-Martínez A. Consumers' Acceptability and Perception of Edible Insects as an Emerging Protein Source. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15756. [PMID: 36497830 PMCID: PMC9739510 DOI: 10.3390/ijerph192315756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 05/27/2023]
Abstract
In recent years in Western Europe, studies on entomophagy have drawn the attention of many researchers interested in identifying parameters that could improve the acceptability of insect consumption in order to introduce insects as a sustainable source of protein into the future diet. Analysing the factors involved in consumer acceptability in the Mediterranean area could help to improve their future acceptance. A cross-sectional study was conducted using an ad-hoc questionnaire in which 1034 consumers participated. The questionnaire responses allowed us to study the areas relevant to acceptance: neophobia, social norms, familiarity, experiences of consumption and knowledge of benefits. Only 13.15% of participants had tried insects. Disgust, lack of custom and food safety were the main reasons for avoiding insect consumption. Consequently, preparations with an appetising appearance need to be offered, with flours being the most accepted format. The 40-59-year-old age group was the one most willing to consume them. To introduce edible insects as food in the future, it is important to inform people about their health, environmental and economic benefits because that could increase their willingness to include them in their diet.
Collapse
Affiliation(s)
- Marta Ros-Baró
- Faculty of Health Sciences, Open University of Catalonia (UOC), 08018 Barcelona, Spain
| | | | - Maria Santos-Pagès
- Faculty of Health Sciences, Open University of Catalonia (UOC), 08018 Barcelona, Spain
| | - Anna Bach-Faig
- FoodLab Research Group, Faculty of Health Sciences, Open University of Catalonia (UOC), 08018 Barcelona, Spain
- Unesco Chair on Food, Culture and Development, Open University of Catalonia (UOC), 08018 Barcelona, Spain
- Food and Nutrition Area, Barcelona Official College of Pharmacists, 08009 Barcelona, Spain
| | - Alicia Aguilar-Martínez
- FoodLab Research Group, Faculty of Health Sciences, Open University of Catalonia (UOC), 08018 Barcelona, Spain
- Unesco Chair on Food, Culture and Development, Open University of Catalonia (UOC), 08018 Barcelona, Spain
| |
Collapse
|