1
|
Ouarabi L, Hamma-Faradji S, Barache N, Zidi G, Belguesmia Y, Drider D. Characterization of Lactiplantibacillus plantarum strains isolated from Algerian fruits for probiotic and biotechnological applications. Antonie Van Leeuwenhoek 2025; 118:65. [PMID: 40153083 DOI: 10.1007/s10482-025-02074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/10/2025] [Indexed: 03/30/2025]
Abstract
Twenty-one lactic acid bacteria (LAB) strains were isolated from Algerian fruits such as white mulberry (Morus alba L.), prickly pear (Opuntia ficus-indica), date (Phoenix dactylifera L.), grape (Vitis vinifera) and fig (Ficus carica). The initial screening showed that ten out of twenty-one strains were tolerant to acid pH and bile salts and were further identified as Lactiplantibacillus (L.) plantarum strains by MALDI-TOF mass spectrometry and 16S rDNA sequencing. The identified strains were then characterized for their surface properties such as self-aggregation, hydrophobicity and biofilm formation. The resulting data were then statistically processed using Principal Component Analysis (PCA), after which only 5 strains were selected for further analysis. These five strains, designated L. plantarum F8, F13, FB23, D21 and M1, were found to be safe and able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells. In particular, all these strains were active against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538 through the production of lactic acid (up to 12 g.l-1) or bacteriocins, namely plantaricins, or their combination. In addition, these strains showed high antioxidant activity against the synthetic free radicals 2,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis: 3-ethyl-benzothiazoline-6-sulphonic acid (ABTS +) radical. These results demonstrate the importance of these L. plantarum strains for the development of new functional foods and probiotics and as biopreservatives. This study deepens and enriches the knowledge of lactobacilli from plant raw materials by focusing on the functional properties of new strains of L. plantarum isolated from Algerian fruits. In fact, with the growing interest in natural preservatives and probiotics, the results of this study could contribute to the development of new biotechnological products aimed at improving gut health, reducing food-borne illnesses and extending the shelf life of food by preventing spoilage.
Collapse
Affiliation(s)
- Lylia Ouarabi
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria
| | - Samia Hamma-Faradji
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria
| | - Nacim Barache
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria
| | - Ghania Zidi
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria
| | - Yanath Belguesmia
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, 59000, Lille, France.
| | - Djamel Drider
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV-Institut Charles Viollette, 59000, Lille, France
| |
Collapse
|
2
|
Yang W, Jiang M, Chen B, Jiang K, Ma N, Li Y, Wang M, Bao M, Wang C, Yang X. Study the effect of Lactobacillus plantarum ATCC 14917 for caries prevention and anti-obesity. Front Nutr 2024; 11:1511660. [PMID: 39777074 PMCID: PMC11703752 DOI: 10.3389/fnut.2024.1511660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction A complicated scenario where "multiple disease threats coexist and multiple health influencing factors are intertwined" is demonstrated by the fact that dental caries, obesity myopia and scoliosis have emerged as global public health issues. The problem of diseases co-existing in living things can be resolved by using probiotics. Lactobacillus plantarum, has gained attention recently due to its probiotic properties, useful traits, and potential medical applications. Objective Examining the anti-obesity and anti-caries effects of L. plantarum ATCC 14917 on dental caries and obese rat models caused by a high-fat and high-sugar diet is the aim of this study. Method In vitro, we assessed the L. plantarum strain's probiotic properties, such as its antibacterial activity and ability to build biofilms, to determine its ability to inhibit Streptococcus mutans. Prior to the in vivo experiment, the subsist test for L. plantarum ATCC 14917 was carried out by mimicking its capacity to lower blood sugar and blood lipid levels as well as its tolerance to gastrointestinal disorders. In order to assess the health promotion effect of L. plantarum in vivo. Three-week-old rats were fed a high-sugar, high-fat diet for 8 weeks. They were split into three groups: the control group (Control), the caries and obesity group (CA _OB) and the caries and obesity treated with L. plantarum ATCC14917 group (LP). L. plantarum ATCC 14917 was applied during the experiment, and the associated indices were then thoroughly assessed. These included the use of Mirco-CT to calculate the enamel volume, the staining of liver and fat cell sections, serological analysis, and 16S rRNA sequencing of feces. Results It was proved that the L. plantarum could inhibit the proliferation of S. mutans and remove dental plaque biofilm in time, which showed the remarkable effects of anti-caries in vitro. The demineralization rate of enamel decreased by 44.10% due to the inhibition of acid production by pathogenic bacteria. Moreover, In intestinal and stomach juice simulations, L. plantarum has a high survival rate. The characteristics of bacterial activity in a wide range of pH could degrade triglycerides and glucose in vitro smoothly. The LP group demonstrated it by reducing animal weight, serum biochemical indices, and HE-stained adipocytes as compared to the CA_OB group. 16S rRNA sequencing data showed that a high-fat and high-sugar diet induced the imbalance of intestinal flora, which showed an increase in microbial abundance, including unclassified_o__Clostridia_UCG-014, unclassified_f__Oscillospiraceae, Turicibacter, unclassified_f__Lachnospiraceae, Clostridium_sensu_stricto_1. After the intervention of L. plantarum, the number of Lactobacillus, Limosilactobacillus, unclassified_f__Muribaculaceae, Blautia, Faecalibaculum increased significantly. Conclusion Therefore, L. plantarum ATCC 14917 performed the potential of reducing tooth decay and controlling weight gain by a single strain. Support the management of dental caries and obesity, and establish a foundation for future functional food research and development.
Collapse
Affiliation(s)
- Wei Yang
- Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Mingxin Jiang
- Department of Micro-endodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bairu Chen
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kongzhao Jiang
- Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Nan Ma
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yimin Li
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meng Wang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meihua Bao
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chengyue Wang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaopeng Yang
- Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
Zhao J, Zhao J, Zang J, Peng C, Li Z, Zhang P. Isolation, identification, and evaluation of lactic acid bacteria with probiotic potential from traditional fermented sour meat. Front Microbiol 2024; 15:1421285. [PMID: 39726969 PMCID: PMC11669687 DOI: 10.3389/fmicb.2024.1421285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Sour meat is a popular traditional fermented product and is a rich source of novel strains with probiotic potential. In this study, we aimed to assess the probiotic potential of lactic acid bacteria (LAB) strains isolated from fermented sour meat. Firstly, the microbial diversity of sour meat from four different areas in China was analyzed. The results showed that LAB were predominant in all samples. Subsequently, LAB were isolated from sour meat and a series of in vitro probiotic tests were carried out. A total of 130 bacterial strains with dissolved calcium were obtained and 10 strains showed a range of 89-97% survival in an acidic environment and high tolerance to bile salts. The ranges of hydrophobicity and auto-aggregation of 10 strains were 4.85-80.75% and 1.58-84.2%, respectively. Besides, all 10 strains exhibited high antimicrobial activity and antioxidant activity, of which, DZ24 possessed the strongest free radical scavenging (45.1%) and anti-lipid oxidizing ability (90.3%). Furthermore, DZ24 was identified as Lactiplantibacillus plantarum by 16S rRNA gene sequencing. Moreover, the fermentation indexes showed that DZ24 could rapidly reduce the pH to 4.14 and showed high salt and nitrite resistance and antioxidant ability. All the above experimental results indicate that Lactiplantibacillus plantarum DZ24 promise a suitable probiotic candidate for future applications in the fermented functional meats.
Collapse
Affiliation(s)
- Jiayi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Jinshan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinhong Zang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- Qingdao JuDaYang Algae Industry Group Co., Ltd., Qingdao, China
| | - Chuantao Peng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Peng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
4
|
Wang J, Liu X, Liu J, Sui Y, Yu W, Kong B, Chen Q. Improving the bacterial community, flavor, and safety properties of northeastern sauerkraut by inoculating autochthonous Levilactobacillus brevis. Food Chem X 2024; 22:101408. [PMID: 38707785 PMCID: PMC11068551 DOI: 10.1016/j.fochx.2024.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
The effect of Levilactobacillus brevis as a starter in northeastern sauerkraut fermentation is still unknown, and further evaluation is worthwhile. Hence, this study aimed to evaluate the effect of autochthonous L. brevis inoculation on the bacterial community succession and formation of flavor and harmful substances in sauerkrauts. Inoculation with L. brevis lowered the pH and increased the total acid content of sauerkrauts (P < 0.05). The nitrite content of the inoculated sauerkraut was significantly lower than that of control (P < 0.05). Moreover, the spoilage bacteria of the inoculated sauerkraut were decreased and nitrogen metabolism was improved. The contents of aldehydes, alcohols, esters, acids, and alkanes increased significantly (P < 0.05), and the sensory attributes such as aroma, sourness, and gloss were also improved. L. brevis was positively and negatively correlated with flavor metabolites and nitrite, respectively, which proved to be a potential starter culture to manufacture sauerkraut.
Collapse
Affiliation(s)
- Jiawang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Weihua Yu
- Tianshunyuan Muslim Food Co., LTD, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
5
|
Yang X, Peng Z, He M, Li Z, Fu G, Li S, Zhang J. Screening, probiotic properties, and inhibition mechanism of a Lactobacillus antagonistic to Listeria monocytogenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167587. [PMID: 37797767 DOI: 10.1016/j.scitotenv.2023.167587] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Listeria monocytogenes is one of the most lethal foodborne pathogens, and there is a lack of microorganisms that can strongly inhibit its growth. Safe lactic acid bacteria with probiotic and antibacterial properties are ideal sources of antagonistic bacteria. This study isolated a strain of Lactobacillus plantarum 4-10 that completely killed L. monocytogenes from northeastern Chinese sauerkraut. Probiotic characterization revealed broad-spectrum bacterial inhibition, antagonizing 16 Gram-positive, Gram-negative, and fungal species. After tolerance to simulated intestinal and gastric fluids, the survival rate was >45 %. L. plantarum 4-10 was sensitive to chloramphenicol, doxycycline, erythromycin, and tetracycline, and exhibited good hydrophobicity, auto-aggregation, and co-aggregation. It could disrupt the cell structure when co-cultured with L. monocytogenes and act as a lethal agent within 15 h. Through transcriptomic analysis and validation experiments, we found that L. plantarum 4-10 could inhibit the expression of L. monocytogenes membrane transport-related genes by producing bacteriocins, thus disrupting the cell membrane structure and inhibiting the growth, metabolic viability, and biofilm formation of L. monocytogenes in a short time. In conclusion, L. plantarum 4-10 has good probiotic properties and antibacterial effects and shows excellent research and application prospects as a natural bacteriostat.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengni He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhibin Li
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Guihua Fu
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Shaolei Li
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Viana MVC, Barh D, Sabri NA, Azevedo V. Applications of Proteomics in Probiotics Having Anticancer and Chemopreventive Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:243-256. [PMID: 38409425 DOI: 10.1007/978-3-031-50624-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Proteomics has grown in importance in molecular sciences because it gives vital information on protein identification, expression levels, and alteration. Cancer is one of the world's major causes of death and is the major focus of much research. Cancer risk is determined by hereditary variables as well as the body's immunological condition. Probiotics have increasing medical importance due to their therapeutic influence on the human body in the prevention and treatment of numerous chronic illnesses, including cancer, with no adverse effects. Several anticancer, anti-inflammatory, and chemopreventive probiotics are studied using different proteomic approaches like two-dimensional gel electrophoresis, liquid chromatography-mass spectrometry, and matrix-assisted laser desorption/ionization mass spectrometry. To gain relevant information about probiotic characteristics, data from the proteomic analysis are evaluated and processed using bioinformatics pipelines. Proteomic studies showed the significance of different proteomic approaches in characterization, comparing strains, and determination of oxidative stress of different probiotics. Moreover, proteomic approaches identified different proteins that are involved in glucose metabolism and the formation of cell walls or cell membranes, and the differences in the expression of critical enzymes in the HIF-1 signaling pathway, starch, and sucrose metabolism, and other critical metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Amr S Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marcus Vinicius Canário Viana
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Xu X, Qiao Y, Peng Q, Shi B. Probiotic Properties of Loigolactobacillus coryniformis NA-3 and In Vitro Comparative Evaluation of Live and Heat-Killed Cells for Antioxidant, Anticancer and Immunoregulatory Activities. Foods 2023; 12:foods12051118. [PMID: 36900635 PMCID: PMC10001366 DOI: 10.3390/foods12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Some Latiactobacilli are often used as probiotics due to their functional activities, including antioxidant, anticancer and immunoregulation effect. Loigolactobacillus coryniformis NA-3 obtained from our laboratory is a promising probiotic according to the previous study. Coculture, the Oxford cup test and disk-diffusion methods were used to evaluate the probiotic properties and antibiotic resistance of L. coryniformis NA-3. The antioxidant activities of live and heat-killed L. coryniformis NA-3 were assessed via radicals' scavenging ability. The potential anticancer and immunoregulatory capacity was determined in vitro using cell lines. The results indicate that L. coryniformis NA-3 has antibacterial activity and cholesterol removal ability and is sensitive to most antibiotics. Dead L. coryniformis NA-3 can scavenge free radicals as well as live strains. Live L. coryniformis NA-3 can significantly inhibit the proliferation of colon cancer cells; however, dead cells cannot. After RAW 264.7 macrophages were treated with live and heat-killed L. coryniformis NA-3, the production of NO, IL-6, TNF-α and reactive oxygen species (ROS) was induced. The increased expression of inducible nitric oxide synthase (iNOS) in treated macrophages mediates the production of NO. In conclusion, L. coryniformis NA-3 showed potential probiotic properties, and the heat-killed strain also exhibited activities similar to those of live bacteria, suggesting the possible value of its further application in the food processing and pharmaceutical industries.
Collapse
|
8
|
Escobar-Sánchez M, Carrasco-Navarro U, Juárez-Castelán C, Lozano-Aguirre Beltrán L, Pérez-Chabela ML, Ponce-Alquicira E. Probiotic Properties and Proteomic Analysis of Pediococcus pentosaceus 1101. Foods 2022; 12:foods12010046. [PMID: 36613263 PMCID: PMC9818561 DOI: 10.3390/foods12010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pediococcus pentosaceus 1101 was identified by using 16S rRNA and MALDI-Biotyper. The strain was exposed to conditions that resemble the gastrointestinal tract (GT) to evaluate its probiotic properties. That included the growth kinetics, proteolytic and inhibitory activities within a pH range, survival at low pH and in the presence of bile salts, antagonistic activity, cell-adhesion properties, and antibiotic resistance. The evaluation was followed by a genomic and proteomic analysis that involved the identification of proteins obtained under control and gastrointestinal conditions. The strain showed antagonistic activity against Gram-negative and Gram-positive bacteria, high resistance to acidity (87% logarithmic survival rate, pH 2) and bile salts (99% logarithmic survival rate, 0.5% w/v), and hydrophobic binding, as well as sensitivity to penicillin, amoxicillin, and chloramphenicol. On the other hand, P. pentosaceus 1101 has a genome size of 1.76 Mbp, with 1754 coding sequences, 55 rRNAs, and 33 tRNAs. The proteomic analysis showed that 120 proteins were involved in mechanisms in which the strain senses the effects of acid and bile salts. Moreover, the strain produces at least one lytic enzyme (N-acetylmuramoyl-L-alanine amidase; 32 kDa) that may be related to the antimicrobial activity. Therefore, proteins identified might be a key factor when it comes to the adaptation of P. pentosaceus 1101 into the GT and associated with its technological and probiotic properties.
Collapse
Affiliation(s)
- Monserrat Escobar-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Carmen Juárez-Castelán
- Cinvestav, Departamento de Genética y Biología Molecular, Ciudad de México 07360, Mexico
| | | | - M. Lourdes Pérez-Chabela
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|