1
|
Shahbaz S, Iahtisham-Ul-Haq, Nadeem N, Siddiqui M, Mugabi R, Sharma A, Alsulami T, Nayik GA. Development and accelerated shelf-life assessment of coconut squash: A comprehensive evaluation of physicochemical, antioxidant, and sensory attributes. Food Chem X 2025; 25:102237. [PMID: 39968042 PMCID: PMC11833350 DOI: 10.1016/j.fochx.2025.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Value addition in food products is essential to meet changing market trends and lifestyle demands, enhancing both quality and market value. This study aimed to develop and evaluate the accelerated shelf-life of coconut squash. Five formulations with varying coconut milk concentrations (100-500 mL/L) were analyzed over 56 days at room temperature (20 °C). The Q10 method, using acid value as a spoilage factor and temperature as an acceleration factor, was employed for shelf-life prediction. Physicochemical and antioxidant properties were monitored, revealing decreases in pH, total sugars, total phytochemicals, and antioxidant activity, alongside increases in acidity, TSS, and FFA during storage. Sensory evaluation identified T5 as the optimal formulation due to its superior quality attributes and a predicted shelf life of 121 days. These findings highlight T5's potential for commercial applications as a high-quality, functional beverage.
Collapse
Affiliation(s)
- Sara Shahbaz
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Punjab, Pakistan
| | - Iahtisham-Ul-Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Punjab, Pakistan
| | - Nirmeen Nadeem
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Punjab, Pakistan
| | - Mahnoor Siddiqui
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Punjab, Pakistan
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Aanchal Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Tawfiq Alsulami
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot 360003, Gujarat, India
| |
Collapse
|
2
|
Huang J, Liu Z, Guo Q, Zou J, Zheng Y, Li D. Induction and Transcriptome Analysis of Callus Tissue from Endosperm of Makapuno Coconut. PLANTS (BASEL, SWITZERLAND) 2024; 13:3242. [PMID: 39599451 PMCID: PMC11598300 DOI: 10.3390/plants13223242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The makapuno coconut endosperm is distinguished by its soft and irregular texture, in contrast to the solid endosperm of regular coconuts. To establish a scientific foundation for studying makapuno coconuts, callus was induced from makapuno endosperm using a combination of plant growth regulators. The induction was successful, and the resulting callus was subsequently subcultured for further study. Transcriptome sequencing of the makapuno callus identified 429 differentially expressed genes (DEGs), with 273 upregulated and 156 downregulated, compared to callus derived from regular coconut endosperm. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that these DEGs were involved in key metabolic pathways, including fructose and mannose metabolism, carbon fixation in photosynthetic organisms, galactose metabolism, and amino sugar and nucleotide sugar metabolism. Furthermore, lipid content analysis of the makapuno callus revealed a significantly higher total lipid level compared to regular callus, with notable differences in the levels of specific fatty acids, such as myristic acid, palmitic acid, and linoleic acid. This study establishes a novel platform for molecular biological research on makapuno coconuts and provides valuable insights into the molecular mechanisms underlying the formation of makapuno callus tissue. The findings also lay the groundwork for future research aimed at elucidating the unique properties of makapuno endosperm and exploring its potential applications.
Collapse
Affiliation(s)
- Jing Huang
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (J.H.); (Z.L.); (Q.G.); (Y.Z.)
| | - Zijia Liu
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (J.H.); (Z.L.); (Q.G.); (Y.Z.)
| | - Qinghui Guo
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (J.H.); (Z.L.); (Q.G.); (Y.Z.)
| | - Jixin Zou
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China;
| | - Yusheng Zheng
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (J.H.); (Z.L.); (Q.G.); (Y.Z.)
| | - Dongdong Li
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (J.H.); (Z.L.); (Q.G.); (Y.Z.)
| |
Collapse
|
3
|
Zhou L, Sun X, Iqbal A, Yarra R, Wu Q, Li J, Lv X, Ye J, Yang Y. Revealing the aromatic sonata through terpenoid profiling and gene expression analysis of aromatic and non-aromatic coconut varieties. Int J Biol Macromol 2024; 280:135699. [PMID: 39288860 DOI: 10.1016/j.ijbiomac.2024.135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Rajesh Yarra
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiang Lv
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jianqiu Ye
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| |
Collapse
|
4
|
Zhou L, Sun X, Yarra R, Iqbal A, Wu Q, Li J, Yang Y. Combined transcriptome and metabolome analysis of sugar and fatty acid of aromatic coconut and non-aromatic coconut in China. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100190. [PMID: 38259870 PMCID: PMC10801327 DOI: 10.1016/j.fochms.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Sugar and fatty acid content are among the important factors that contribute to the intensity of flavor in aromatic coconut. Gaining a comprehensive understanding of the sugar and fatty acid metabolites in the flesh of aromatic coconuts, along with identifying the key synthetic genes, is of significant importance for improving the development of desirable character traits in these coconuts. However, the related conjoint analysis of metabolic targets and molecular synthesis mechanisms has not been carried out in aromatic coconut until now. UPLC-MS/MS combined with RNA-Seq were performed in aromatic coconut (AC) and non-aromatic coconut (NAC) meat at 7, 9 and 11 months. The results showed that D-fructose in AC coconut meat was 3.48, 2.56 and 3.45 fold higher than that in NAC coconut meat. Similarly, D-glucose in AC coconut meat was 2.48, 2.25 and 3.91 fold higher than that in NAC coconut meat. The NAC coconut meat showed a 1.22-fold rise in the content of lauric acid compared to the AC coconut meat when it reached 11 months of age. Myristic acid content in NAC coconut meat was 1.47, 1.44 and 1.13 fold higher than that in AC coconut meat. The palmitic acid content in NAC coconut meat was 1.62 and 1.34 fold higher than that in AC coconut meat. The genes SPS, GAE, GALE, GLCAK, UGE, UGDH, FBP, GMLS, PFK, GPI, RHM, ACC, FabF, FatA, FabG, and FabI exhibited a negative correlation with D-fructose (r = -0.81) and D-glucose (r = -0.99) contents, while showing a positive correlation (r = 0.85-0.96) with lauric acid and myristic acid. Furthermore, GALE, GLCAK, FBP, GMLS, and ACC displayed a positive correlation (r = 0.83-0.94) with palmitic acid content. The sugar/organic acid ratio exhibited a positive correlation with SPS, GAE, UGE, FabF, FabZ and FabI.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Rajesh Yarra
- Department of Plant and Agroecosytem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
5
|
Daszkiewicz T, Michalak M, Śmiecińska K. A comparison of the quality of plain yogurt and its analog made from coconut flesh extract. J Dairy Sci 2024; 107:3389-3399. [PMID: 38135040 DOI: 10.3168/jds.2023-24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
The aim of this study was to compare the quality of plain yogurt made from cow milk (n = 10) and its plant-based analog made from coconut flesh extract (n = 14). Coconut yogurt alternatives were divided into 2 experimental groups based on differences in their color, which were noted after the packages had been opened. The first group included products with a typical white color (n = 8), and the second group comprised products with a grayish pink color (n = 6) that developed as a result of oxidative processes. In comparison with its plant-based analog, plain yogurt was characterized by higher values of lightness (L*), yellowness (b*) and chroma (C*), higher titratable acidity, a higher content of retinol and α-tocopherol, higher nutritional value of fat, and lower values of water-holding capacity (WHC) and redness (a*). Plain yogurt had lower volatile acidity than its plant-based analog with a grayish pink color. A comparison of yogurt analogs with different colors revealed that the product with a grayish pink color was characterized by a lower value of L*, and higher values of a*, b*, C*, and pH. An analysis of its fatty acid profile demonstrated that it also had a higher proportion of C14:0 and C18:1 cis-9; higher total monounsaturated fatty acids content; a lower proportion of C10:0, C12:0, and C18:2; a lower total content of polyunsaturated fatty acids (PUFA) and essential fatty acids; and a lower ratio of PUFA to saturated fatty acids. The yogurt analog with a grayish pink color had a lower total content of tocopherol isoforms than the remaining products. The yogurt analog with a white color had the highest WHC and γ-tocopherol content. Consumers should be aware of the fact that coconut yogurt alternatives may have nonstandard quality attributes. The differences between such products and yogurt made from cow milk should be explicitly communicated to consumers so that they could make informed purchasing decisions.
Collapse
Affiliation(s)
- T Daszkiewicz
- Department of Commodity Science and Processing of Animal Raw Materials, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - M Michalak
- Department of Commodity Science and Processing of Animal Raw Materials, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - K Śmiecińska
- Department of Commodity Science and Processing of Animal Raw Materials, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
6
|
Xiang F, Ding CX, Wang M, Hu H, Ma XJ, Xu XB, Zaki Abubakar B, Pignitter M, Wei KN, Shi AM, Wang Q. Vegetable oils: Classification, quality analysis, nutritional value and lipidomics applications. Food Chem 2024; 439:138059. [PMID: 38039608 DOI: 10.1016/j.foodchem.2023.138059] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Lipids are widespread in nature and play a pivotal role as a source of energy and nutrition for the human body. Vegetable oils (VOs) constitute a significant category in the food industry, containing various lipid components that have garnered attention for being natural, environmentally friendly and health-promoting. The review presented the classification of raw materials (RMs) from oil crops and quality analysis techniques of VOs, with the aim of improving comprehension and facilitating in-depth research of VOs. Brief descriptions were provided for four categories of VOs, and quality analysis techniques for both RMs and VOs were generalized. Furthermore, this study discussed the applications of lipidomics technology in component analysis, processing and utilization, quality determination, as well as nutritional function assessment of VOs. Through reviewing RMs and quality analysis techniques of VOs, this study aims to encourage further refinement and development in the processing and utilization of VOs, offering valuable references for theoretical and applied research in food chemistry and food science.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cai-Xia Ding
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Miao Wang
- The China-Africa Green Agriculture Development Research Center, CGCOC Agriculture Development Co., Ltd., Beijing 100101, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiao-Jie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xue-Bing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Bello Zaki Abubakar
- Department of Agricultural Extension and Rural Development, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto 840101, Nigeria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Kang-Ning Wei
- The China-Africa Green Agriculture Development Research Center, CGCOC Agriculture Development Co., Ltd., Beijing 100101, China
| | - Ai-Min Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
7
|
Rizwana H, Aljowaie RM, Al Otibi F, Alwahibi MS, Alharbi SA, Al Asmari SA, Aldosari NS, Aldehaish HA. Antimicrobial and antioxidant potential of the silver nanoparticles synthesized using aqueous extracts of coconut meat (Cocos nucifera L). Sci Rep 2023; 13:16270. [PMID: 37758773 PMCID: PMC10533512 DOI: 10.1038/s41598-023-43384-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Human pathogenic fungi and bacteria pose a huge threat to human life, accounting for high rates of mortality every year. Unfortunately, the past few years have seen an upsurge in multidrug resistance pathogens. Consequently, finding an effective alternative antimicrobial agent is of utmost importance. Hence, this study aimed to phytofabricate silver nanoparticles (AgNPs) using aqueous extracts of the solid endosperm of Cocos nucifera L, also known as coconut meat (Cm). Green synthesis is a facile, cost-effective and eco-friendly methods which has several benefits over other physical and chemical methods. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The Cm-AgNPs showed a UV-Vis peak at 435 nm and were crystalline and quasi-spherical, with an average size of 15 nm. The FTIR spectrum displayed functional groups of phenols, alkaloids, sugars, amines, and carbonyl compounds, which are vital in the reduction and capping of NPs. The antibacterial and anticandidal efficacy of the Cm-AgNPs was assessed by the agar-well diffusion method and expressed as a zone of inhibition (ZOI). Amongst all the test isolates, Staphylococcus epidermidis, Candida auris, and methicillin-resistant Staphylococcus epidermidis were more susceptible to the NPs with a ZOI of 26.33 ± 0.57 mm, 19.33 ± 0.57 mm, and 18 ± 0.76 mm. The MIC and MFC values for Candida spp. were higher than the bacterial test isolates. Scanning electron microscopic studies of all the test isolates at their MIC concentrations showed drastically altered cell morphology, indicating that the NPs could successfully cross the cell barrier and damage the cell integrity, causing cell death. This study reports the efficacy of Cm-AgNPs against several Candida and bacterial strains, which had not been reported in earlier studies. Furthermore, the synthesized AgNPs exhibited significant antioxidant activity. Thus, the findings of this study strongly imply that the Cm-AgNPs can serve as promising candidates for therapeutic applications, especially against multidrug-resistant isolates of Candida and bacteria. However, further investigation is needed to understand the mode of action and biosafety.
Collapse
Affiliation(s)
- Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia.
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Fatimah Al Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Saleh Ali Alharbi
- Department of Microbiology, Ministry of Health, Regional Laboratory, 14969, Riyadh, Saudi Arabia
| | - Saeed Ali Al Asmari
- Department of Microbiology, Ministry of Health, Regional Laboratory, 14969, Riyadh, Saudi Arabia
| | - Noura S Aldosari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Horiah A Aldehaish
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Fernandes AS, Ferreira-Pêgo C, Costa JG. Functional Foods for Health: The Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables and Culinary Herbs. Foods 2023; 12:2742. [PMID: 37509834 PMCID: PMC10379050 DOI: 10.3390/foods12142742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The concept of "functional foods" converges topics such as diet, food, health, and disease [...].
Collapse
Affiliation(s)
- Ana S Fernandes
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Cíntia Ferreira-Pêgo
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - João G Costa
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|