1
|
Wang Y, Wang M, Jiang W, Li S, Liu S, Liu M, Lyu M, Wang S. Characteristics of Porous Starch from Lotus Seeds Using Dextranase: Protection and Sustained Release of Proanthocyanidins. Foods 2025; 14:1050. [PMID: 40232086 PMCID: PMC11942344 DOI: 10.3390/foods14061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Porous starch, known for its large specific surface area due to internal pores, exhibits excellent adsorption capabilities. In this study, we successfully produced porous starch from lotus seeds using dextranase and conducted a comprehensive analysis of its surface morphology, crystalline structure, pasting behavior, and adsorption characteristics. The enzymatic treatment resulted in the development of a pore structure on the lotus seed starch (LS) surface without altering its crystalline structure, as confirmed by Fourier transform infrared spectroscopy and X-ray diffraction. The oil and water absorption capacities of the porous starch increased by 14% and 27%, respectively. Differential scanning calorimetry indicated a higher pasting temperature for the porous starch. This starch exhibited remarkable drug-carrying capabilities, absorbing up to 18.23 mg/g of proanthocyanidins and significantly shielding them from UV damage. In vitro release tests in simulated intestinal fluid revealed that the encapsulated proanthocyanidins (PC) achieved nearly complete release. These results underscore the potential of LS as a drug carrier and provide valuable insights for developing innovative intestinal drug delivery systems.
Collapse
Affiliation(s)
- Yuying Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ming’ao Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Weihong Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siyu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Carrillo Parra EJ, Palavecino P, Ribotta PD, Penci MC. Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:50. [PMID: 39873831 DOI: 10.1007/s11130-024-01285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp. and gelatinization enthalpy 4.5-11 J/g) of starch and water absorption were the most affected, while crystallinity was practically unmodified (crystallinity % 23-25). The thermal effect induced by the ultrasound treatment caused most of the alterations in the properties of corn starch. It was associated with the partial gelatinization of the material due to an increase in the system's temperature (up to 65° C). The effect of the mechanical phenomenon of the treatment by ultrasound waves contributed to a lesser extent compared to the thermal effect. The mechanical effect can extend over time, without the aggravating factor of causing starch gelatinization. The combination of both effects could synergistically modify the granular structure of starch. In conclusion, ultrasound waves as a pre-treatment to enzymatic hydrolysis can cause structural disorganization of starch granules and facilitate the subsequent enzymatic attack for the production of porous starches.
Collapse
Affiliation(s)
- Esteban Josué Carrillo Parra
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, Argentina
| | - Pablo Palavecino
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, Argentina
| | - Pablo Daniel Ribotta
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, Argentina
| | - Maria Cecilia Penci
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, Argentina.
| |
Collapse
|
3
|
Kapusniak K, Wojcik M, Rosicka-Kaczmarek J, Miśkiewicz K, Pacholczyk-Sienicka B, Juszczak L. Molecular Structure and Properties of Resistant Dextrins from Potato Starch Prepared by Microwave Heating. Int J Mol Sci 2024; 25:11202. [PMID: 39456986 PMCID: PMC11508830 DOI: 10.3390/ijms252011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The dextrinization of potato starch was performed using a sophisticated single-mode microwave reactor with temperature and pressure control using 10 cycles of heating with stirring between cycles. Microwave power from 150 to 250 W, a cycle time from 15 to 25 s, and two types of vessels with different internal diameters (12 and 24 mm) and therefore different thicknesses of the heated starch layer were used in order to estimate the impact of vessel size used for microwave dextrinization. The characteristics of resistant dextrins (RD) including solubility in water, total dietary fiber (TDF) content, color parameters, the share of various glycosidic bonds, and pasting and rheological properties were carried out. The applied conditions allowed us to obtain RDs with water solubility up to 74% at 20 °C, as well as TDF content up to 47%, with a predominance of low-molecular-weight soluble fiber fraction, with increased content of non-starch glycosidic bonds, negligible viscosity, and a slightly beige color. The geometry of the reaction vessel influenced the properties of dextrins obtained under the same heating power, time, and repetition amounts. Among the conditions used, the most favorable conditions were heating 10 times for 20 s at 200 W in a 10 mL vessel and the least favorable were 15 s cycles.
Collapse
Affiliation(s)
- Kamila Kapusniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Malwina Wojcik
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (J.R.-K.); (K.M.)
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (J.R.-K.); (K.M.)
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Leslaw Juszczak
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| |
Collapse
|
4
|
Zhu J, Han L, Wang M, Yang J, Fang Y, Zheng Q, Zhang X, Cao J, Hu B. Formation, influencing factors, and applications of internal channels in starch: A review. Food Chem X 2024; 21:101196. [PMID: 38370305 PMCID: PMC10869744 DOI: 10.1016/j.fochx.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Starch, a natural polymer, has a complex internal structure. Some starches, such as corn and wheat starches, have well-developed surface pores and internal channels. These channel structures are considered crucial in connecting surface stomata and internal cavities and have adequate space for loading guest molecules. After processing or modification, the starch-containing channel structures can be used for food and drug encapsulation and delivery. This article reviews the formation and determination of starch internal channels, and the influence of different factors (such as starch species and processing conditions) on the channel structure. It also discusses relevant starch preparation methods (physical, chemical, enzymatic, and synergistic), and the encapsulation effect of starch containing internal channels on different substances. In addition, the role of internal channels in regulating the starch digestion rate and other aspects is also discussed here. This review highlights the significant multifunctional applications of starch with a channel structure.
Collapse
Affiliation(s)
- Junzhe Zhu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Meini Wang
- School of Life Science, College of Liberal Arts and Sciences, University of Westminster, United Kingdom
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Wrexham, United Kingdom
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuyue Zheng
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Xiaobo Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Jijuan Cao
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Bing Hu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| |
Collapse
|
5
|
Liang X, Chen L, McClements DJ, Peng X, Xu Z, Meng M, Jin Z. Bioactive delivery systems based on starch and its derivatives: Assembly and application at different structural levels. Food Chem 2024; 432:137184. [PMID: 37633137 DOI: 10.1016/j.foodchem.2023.137184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Starch and modified starch, spanning various structural levels, are comprehensively reviewed, with a special emphasis on the advancement of starch and its derivative-based delivery systems for bioactive substances. The pivotal aspect highlighted is the controlled release of active ingredients by starch-based delivery systems with distinct hierarchical structures. At the molecular level, diverse categories of starch degradation products, such as dextrin and highly branched starch, serve as versatile amphiphilic carriers for encapsulating active ingredients. At the level of helical structure, the distinctive configuration of the starch-guest complex partly determines the mechanism of controlled release for diverse active components. At the crystal and particle structural level, starch assumes the role of a carrier, effectively modulating the release of active substances, and enhances the innate physiological activity of different active components. As a natural polymer molecule, starch can also generate hydrogel materials in polymer form, expanding its utility in the fields of food, materials, and even medicine.
Collapse
Affiliation(s)
- Xiuping Liang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China; Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Lei H, Liao Z, Wang L, Zeng X, Han Z. Pulsed Electric Field-Assisted Enzymatic and Alcoholic-Alkaline Production of Porous Granular Cold-Water-Soluble Starch: A Carrier with Efficient Zeaxanthin-Loading Capacity. Foods 2023; 12:3189. [PMID: 37685122 PMCID: PMC10487166 DOI: 10.3390/foods12173189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, porous starch was modified using pulsed electric field (PEF) pretreatment and alcoholic-alkaline treatment to prepare porous granular cold-water-soluble starch (P-GCWSS). The soluble porous starch has high adsorption capability and high cold water solubility, allowing effective encapsulation of zeaxanthin and improving zeaxanthin's water solubility, stability, and bioavailability. The physical and chemical properties of GCWSS and complex were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results showed that the cold water solubility of the pulsed electric field-treated porous granular cold-water-soluble starch (PEF-P-GCWSS) increased by 12.81% compared to granular cold-water-soluble starch (GCWSS). The pulsed electric field treatment also increased the oil absorption of PEF-P-GCWSS was improved by 15.32% compared to porous granular cold-water-soluble starch (P-GCWSS). PEF-P-GCWSS was effective in encapsulating zeaxanthin, which provided a good protection for zeaxanthin. The zeaxanthin-saturated solubility in water of PPG-Z was increased by 56.72% compared with free zeaxanthin. The zeaxanthin embedded in PEF-P-GCWSS was able to be released slowly during gastric digestion and released rapidly during intestinal digestion.
Collapse
Affiliation(s)
- Huanqing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
| | - Zhongjuan Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
| | - Langhong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
| | - Xinan Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
- Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang 529500, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| |
Collapse
|