1
|
Yi L, Cheng L, Yang Q, Shi K, Han F, Luo W, Duan S. Source, Extraction, Properties, and Multifunctional Applications of Pectin: A Short Review. Polymers (Basel) 2024; 16:2883. [PMID: 39458710 PMCID: PMC11511015 DOI: 10.3390/polym16202883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pectin, a heteropolysaccharide derived from plant cell walls, is essential in the food, pharmaceutical, and environmental industries. Currently, citrus and apple peels are the primary sources for commercial pectin production. The yield and quality of pectin extracted from various plant sources significantly differ based on the extraction methods employed, which include physical, chemical, and biological processes. The complex structures of pectin, composed of polygalacturonic acid and rhamnogalacturonan, influence its physicochemical properties and, consequently, its functionality. As a common polysaccharide, pectin finds applications across multiple sectors. In the food industry, it acts as a gelling agent and a packaging material; in pharmaceuticals, it is utilized for drug delivery and wound healing. Environmentally, pectin contributes to wastewater treatment by adsorbing pollutants. Current research focuses on alternative sources, sustainable extraction methods, and multifunctional applications of pectin. Ongoing studies aim to enhance extraction technologies and broaden the applications of pectin, thereby supporting sustainable development goals.
Collapse
Affiliation(s)
- Le Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Lifeng Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Ke Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Fengbo Han
- Luntai County Star Bo Clothing Co., Ltd., Bazhou 841600, China
| | - Wei Luo
- Key Laboratory of Carbohyrate Chemistry and Biotechnology, Jiangnan University, Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, China
| | - Shengwen Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| |
Collapse
|
2
|
Strani L, Farioli G, Cocchi M, Durante C, Olarini A, Pellacani S. Chemical Characterization and Temporal Variability of Pasta Condiment By-Products for Sustainable Waste Management. Foods 2024; 13:3018. [PMID: 39335946 PMCID: PMC11431017 DOI: 10.3390/foods13183018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Sustainable waste management is an extremely important issue due to its environmental, economic, and social impacts. Knowledge of the chemical composition of the waste produced is a starting point for its valorization. This research focuses, for the first time, on the by-products of pasta condiment production, starting with their characterization. In particular, the presence of potential bioactive compounds and their variability over time have been studied. The latter aspect is crucial for the subsequent valorization of these by-products. In addition to acidity and total phenolic content, an untargeted strategy was adopted, using spectroscopic and chromatographic techniques coupled with chemometrics, to study waste samples coming from four single condiment production lines, i.e., Genoese pesto, tomato, ricotta, and ragù sauces. The presence of lycopene, polyphenols, and several valuable volatile compounds was highlighted. Their presence and relative amounts vary mainly according to the presence of tomatoes in the sauce. The results obtained at different storage times (after 0, 7, 10, and 15 days) showed that the samples studied, despite having similar chemical characteristics, underwent changes after one week of storage and then presented a relatively stable chemical profile. A general decrease is observed after 7 days for almost all the chemical variables monitored, so careful planning within the first days is required to obtain a high recovery.
Collapse
Affiliation(s)
| | | | | | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (L.S.); (G.F.); (M.C.); (A.O.); (S.P.)
| | | | | |
Collapse
|
3
|
Rajkowska K, Otlewska A, Raczyk A, Maciejczyk E, Krajewska A. Valorisation of tomato pomace in anti-pollution and microbiome-balance face cream. Sci Rep 2024; 14:20516. [PMID: 39227423 PMCID: PMC11371812 DOI: 10.1038/s41598-024-71323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Tomato pomace, the main by-product of tomato processing, is also an underestimated source of many active substances. This study aimed to determine the possibility of using oil obtained from tomato pomace in a face cream formulation. The bacterial community structure, face skin biophysical parameters and protection against air pollution were examined after daily application of the cosmetic by volunteers. In the tomato pomace oil, the profile of fatty acids was determined by GC‒MS, and the profile of volatile compounds was determined using the HS-SPME technique. The dominant bioactive component in the oil was linoleic acid (63.6%), and among the volatile compounds, it was carvotanacetone (25.8%). The application of the cream with tomato pomace oil resulted in an increase in the dominant genera Staphylococcus, Anaerococcus and Cutibacterium in the epibiome, particularly beneficial Staphylococcus epidermidis, while limiting the growth of the potentially opportunistic pathogens Kocuria spp., Micrococcus spp., Veillonella spp., and Rothia spp. This study showed the usefulness of tomato pomace oil as a natural ingredient in skin care cosmetics, reducing skin inflammation, sensitivity and melanin level, with potential protective effects against air pollution and microbiome-balance properties. Tomato pomace, which is commonly considered waste after tomato processing, can be used in the development of new cosmetics and may additionally contribute to reducing environmental nuisance.
Collapse
Affiliation(s)
- Katarzyna Rajkowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530, Łódź, Poland.
| | - Anna Otlewska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530, Łódź, Poland.
| | - Aleksandra Raczyk
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530, Łódź, Poland
| | - Ewa Maciejczyk
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Wólczańska 171/173, 90-530, Łódź, Poland.
| | - Agnieszka Krajewska
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Wólczańska 171/173, 90-530, Łódź, Poland
| |
Collapse
|
4
|
Fernandez‐Pan I, Horvitz S, Ibañez FC, Arroqui C, Beriain MJ, Virseda P. Extra-virgin olive oil enriched with lycopene: From industrial tomato by-products to consumer. Food Sci Nutr 2024; 12:5815-5823. [PMID: 39139944 PMCID: PMC11317748 DOI: 10.1002/fsn3.4224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
Lycopene is usually extracted from the by-product of the tomato industry using organic solvents (OS) in combination with a physical technique. An emerging physical technique is high-pressure processing (HPP). This study aims to find a method by applying a green solvent (edible vegetable oils) in an HPP-assisted solid-liquid extraction. Three dosages of tomato by-product (10%, 20%, and 40%, w/v) were tested using OS, sunflower oil (RSO), and extra-virgin olive oil (EVOO). Lycopene recovery increased with the ratio of by-product to oil, particularly when using EVOO. In another stage of the study, consumers evaluated EVOO that contained two doses of tomato by-product (10% and 20%, w/v). Consumers preferred the EVOO from 10% tomato by-product ratio over that with 20%. Additionally, 83.8% of consumers stated that enriched oil could be deemed beneficial for health. The proposed method considers the fundamental principles of the circular economy and practical industrial scenario to recover lycopene from tomato by-product.
Collapse
Affiliation(s)
| | - Sandra Horvitz
- IS‐Food Research Institute, Public University of NavarrePamplonaSpain
| | | | - Cristina Arroqui
- IS‐Food Research Institute, Public University of NavarrePamplonaSpain
| | | | - Paloma Virseda
- IS‐Food Research Institute, Public University of NavarrePamplonaSpain
| |
Collapse
|
5
|
Herzyk F, Piłakowska-Pietras D, Korzeniowska M. Supercritical Extraction Techniques for Obtaining Biologically Active Substances from a Variety of Plant Byproducts. Foods 2024; 13:1713. [PMID: 38890941 PMCID: PMC11171758 DOI: 10.3390/foods13111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Supercritical fluid extraction (SFE) techniques have garnered significant attention as green and sustainable methods for obtaining biologically active substances from a diverse array of plant byproducts. This paper comprehensively reviews the use of supercritical fluid extraction (SFE) in obtaining bioactive compounds from various plant residues, including pomace, seeds, skins, and other agricultural byproducts. The main purpose of supercritical fluid extraction (SFE) is the selective isolation and recovery of compounds, such as polyphenols, essential oils, vitamins, and antioxidants, that have significant health-promoting properties. Using supercritical carbon dioxide as the solvent, supercritical fluid extraction (SFE) not only eliminates the need for hazardous organic solvents, e.g., ethanol, and methanol, but also protects heat-sensitive bioactive compounds. Moreover, this green extraction technique contributes to waste valorisation by converting plant byproducts into value-added extracts with potential applications in the food, pharmaceutical, and cosmetic industries. This review highlights the advantages of SFE, including its efficiency, eco-friendliness, and production of residue-free extracts, while discussing potential challenges and future prospects for the utilisation of SFE in obtaining biologically active substances from plant byproducts.
Collapse
Affiliation(s)
- Filip Herzyk
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
- Wroclaw Technology Park, 54-413 Wrocław, Poland
| | | | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| |
Collapse
|
6
|
Eslami E, Donsì F, Ferrari G, Pataro G. Enhancing Cutin Extraction Efficiency from Industrially Derived Tomato Processing Residues by High-Pressure Homogenization. Foods 2024; 13:1415. [PMID: 38731786 PMCID: PMC11083356 DOI: 10.3390/foods13091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100-130 °C), time (15-120 min), and NaOH concentration (1-3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process.
Collapse
Affiliation(s)
- Elham Eslami
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy; (E.E.); (F.D.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| |
Collapse
|
7
|
Herrero M. Towards green extraction of bioactive natural compounds. Anal Bioanal Chem 2024; 416:2039-2047. [PMID: 37787854 PMCID: PMC10951045 DOI: 10.1007/s00216-023-04969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
The increasing interest in natural bioactive compounds is pushing the development of new extraction processes that may allow their recovery from a variety of different natural matrices and biomasses. These processes are clearly sought to be more environmentally friendly than the conventional alternatives that have traditionally been used and are closely related to the 6 principles of green extraction of natural products. In this trend article, the most critical aspects regarding the current state of this topic are described, showing the different lines followed to make extraction processes greener, illustrated by relevant examples. These include the implementation of new extraction technologies, the research on new bio-based solvents, and the development of new sequential process and biorefinery approaches to produce a full valorization of the natural sources. Moreover, the future outlook in the field is presented, in which the main areas of evolution are identified and discussed.
Collapse
Affiliation(s)
- Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research-CIAL (CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Mateo-Roque P, Morales-Camacho JI, Jara-Romero GJ, Rosas-Cárdenas FDF, Huerta-González L, Luna-Suárez S. Supercritical CO 2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds. Foods 2024; 13:1045. [PMID: 38611350 PMCID: PMC11011313 DOI: 10.3390/foods13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Tomato seeds are a rich source of protein that can be utilized for various industrial food purposes. This study delves into the effects of using supercritical CO2 (scCO2) on the structure and techno-functional properties of proteins extracted from defatted tomato seeds. The defatted meal was obtained using hexane (TSMH) and scCO2 (TSMC), and proteins were extracted using water (PEWH and PEWC) and saline solution (PESH and PESC). The results showed that scCO2 treatment significantly improved the techno-functional properties of protein extracts, such as oil-holding capacity and foaming capacity (especially for PEWC). Moreover, emulsifying capacity and stability were enhanced for PEWC and PESC, ranging between 4.8 and 46.7% and 11.3 and 96.3%, respectively. This was made possible by the changes in helix structure content induced by scCO2 treatment, which increased for PEWC (5.2%) and decreased for PESC (8.0%). Additionally, 2D electrophoresis revealed that scCO2 hydrolyzed alkaline proteins in the extracts. These findings demonstrate the potential of scCO2 treatment in producing modified proteins for food applications.
Collapse
Affiliation(s)
- Paola Mateo-Roque
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Jocksan I. Morales-Camacho
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula 72810, Puebla, Mexico;
| | - Guadalupe Janet Jara-Romero
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Flor de Fátima Rosas-Cárdenas
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Luis Huerta-González
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| |
Collapse
|
9
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
10
|
Ozkan G, Günal-Köroğlu D, Capanoglu E. Valorization of fruit and vegetable processing by-products/wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:1-39. [PMID: 37898537 DOI: 10.1016/bs.afnr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fruit and vegetable processing by-products and wastes are of great importance due to their high production volumes and their composition containing different functional compounds. Particularly, apple, grape, citrus, and tomato pomaces, potato peel, olive mill wastewater, olive pomace and olive leaves are the main by-products that are produced during processing. Besides conventional techniques, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction (sub-critical water extraction), supercritical fluid extraction, enzyme-assisted extraction, and fermentation are emerging tools for the recovery of target compounds. On the other hand, in the view of valorization, it is possible to use them in active packaging applications, as a source of bioactive compound (oil, phenolics, carotenoids), as functional ingredients and as biofertilizer and biogas sources. This chapter explains the production of fruit and vegetable processing by-products/wastes. Moreover, the valorization of functional compounds recovered from the fruit and vegetable by-products and wastes is evaluated in detail by emphasizing the type of the by-products/wastes, functional compounds obtained from these by-products/wastes, their extraction conditions and application areas.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
11
|
Teterycz D, Sobota A. Use of High-Protein and High-Dietary-Fibre Vegetable Processing Waste from Bell Pepper and Tomato for Pasta Fortification. Foods 2023; 12:2567. [PMID: 37444305 DOI: 10.3390/foods12132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
There is worldwide wastage of 1.3 billion tons of food annually. It is recommended that food waste should be reduced at every phase of production. By-products from food processing have high nutritional value so their use in new products is advisable. The aim of the study was to enrich the nutritional value of pasta using waste from the food industry. By-products from tomato processing (tomato waste-TW) and pepper (defatted pepper seeds-DPS, pepper placenta-PP) were used at a level of 10-30% to produce pasta. The farinographic characteristics, chemical composition, cooking quality, and colour of the pasta were studied. The results show a significant (p < 0.05), up to 27%, increase in the protein content of the TW30 samples, compared with the control (16.16% d.m. vs. 20.61% d.m.). The TDF content increased over five times in DPS30 and TW30 (27.99% d.m. and 25.44% d.m.). The amino acid composition of the pasta improved with the fortification but failed to achieve complete protein by FAO. The DPS30, PP20, PP30 and all TW samples can be considered high-protein products according to the EU definition (a minimum of 20% energy from protein). Vegetable waste can be a valuable additive for the improvement of the nutritional value of food.
Collapse
Affiliation(s)
- Dorota Teterycz
- Department of Plant Food Technology and Gastronomy, Division of Engineering and Cereals Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Aldona Sobota
- Department of Plant Food Technology and Gastronomy, Division of Engineering and Cereals Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|