1
|
Tang K, Tian J, Xu Y, Shang G, Peng X, Yue P, Wang Y, Chen S, Hu Z. Aflatoxin B1 Exposure Suppresses the Migration of Dendritic Cells by Reshaping the Cytoskeleton. Int J Mol Sci 2025; 26:1725. [PMID: 40004187 PMCID: PMC11854954 DOI: 10.3390/ijms26041725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Exposure to Aflatoxin B1 (AFB1) is considered a significant risk factor for human diseases, including the immune function impairment of immune cells. Dendritic cells (DCs), as essential antigen-presenting cells, play a pivotal role in bridging innate and adaptive immunity. However, the impact of AFB1 exposure on DCs has not been fully elucidated. In this study, we investigated the effects of AFB1 exposure on the migration ability of DCs and its underlying action model. Initially, we observed that AFB1 exposure inhibited the survival of DCs and altered their cellular morphology. Further investigation revealed that AFB1 promotes cell adhesion and inhibits DC migration by modulating the expression of cell adhesion molecules. Additionally, our findings indicated that cytoskeletal remodeling plays a crucial role in these processes. Experimental techniques such as immunofluorescence and RNA sequencing confirmed that AFB1 exposure regulates the expression of cytoskeleton-related genes. Moreover, we found that the perturbation of the gene expression profile through AFB1 exposure is associated with cell communication. Collectively, our study findings demonstrate that AFB1 can disrupt the expression of cytoskeleton- and adhesion-related molecules in DCs, thereby altering cell morphology and migration. These insights could provide new perspectives for further understanding the immunosuppressive effects of AFB1 and developing therapeutic strategies for diseases associated with AFB1 exposure.
Collapse
Affiliation(s)
- Kaiyi Tang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Jiaxiong Tian
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Yujun Xu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
| | - Guofu Shang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
| | - Xiaoyan Peng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
| | - Ping Yue
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Yun Wang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Sen Chen
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
2
|
Huang J, He K, Guo X, Wang J, Hu H, Zhang X, Guo N, Wang Y, Huang W, Huang R, Liu T, Jiang X, Zhang D, Li Q, Wei Z. T-2 toxin triggers immunotoxic effects in goats by inducing ferroptosis and neutrophil extracellular traps. Toxicol Appl Pharmacol 2025; 495:117232. [PMID: 39832565 DOI: 10.1016/j.taap.2025.117232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
T-2 toxin, a prevalent mycotoxin, represents a notable global public health risk. Neutrophil extracellular traps (NETs) and ferroptosis are involved in a variety of pathophysiological processes and are implicated in goat immunity. However, the impact of T-2 toxin on NETs release, ferroptosis, and their interplay have not been previously documented. In this study, neutrophils were stimulated with T-2 toxin for 4 h. The structure and mechanism of NETs were analyzed using immunofluorescence and Pico Green staining. The expressions of glutathione peroxidase 4 (GPX4) and ferritin (FT) was quantified by qRT-PCR and western blotting. The levels of ROS and lipid ROS were assessed using DCFH-DA and C11 BODIPY 581/591 probes, and cellular mitochondria Fe2+ were detected by using Mito-FerroGreen probe. Inhibitors were utilized to explore the interaction between these two processes. The results confirmed that the T-2 toxin stimulated the NETs production, characterized by a structure co-modified by citrullinated histones (citH3), neutrophil elastase (NE) and DNA. Notably, significant inhibition of NETs production by T-2 toxin was observed with the NOX inhibitor DPI (P < 0.001), the ERK inhibitor U0126 (P < 0.001), the TLR2 inhibitor C29 (P < 0.001), and the TLR4 inhibitor TLR4-IN-C34 (P < 0.001). T-2 toxin triggered ferroptosis in neutrophils by suppressing GPX4 and FT expression, elevating ROS and lipid ROS, and augmenting the concentration of mitochondrial Fe2+. The ferroptosis inhibitor Fer-1 could rescue this induction; however, Fer-1 was unable to inhibit NETs which is induced by T-2 toxin. Conversely, T-2 toxin effectively triggered the downregulation of GPX4, which was counteracted by DPI, U0126, C29, and C34. This research elucidates the immunotoxic mechanisms of T-2 toxin in goat neutrophils and offers a novel perspective on preventing and treating T-2 toxin.
Collapse
Affiliation(s)
- Jing Huang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xin Guo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaxuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Han Hu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuhui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Na Guo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yiwen Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Wenlong Huang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Rongsheng Huang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Tingting Liu
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xi Jiang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Deizhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Frangiamone M, Lázaro Á, Cimbalo A, Font G, Manyes L. In vitro and in vivo assessment of AFB1 and OTA toxic effects and the beneficial role of bioactive compounds. A systematic review. Food Chem 2024; 447:138909. [PMID: 38489879 DOI: 10.1016/j.foodchem.2024.138909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The purpose of this review was to investigate the current knowledge about aflatoxin B1 (AFB1) and ochratoxin A (OTA) toxicity and the possible beneficial role of bioactive compounds by using in vitro and in vivo models. Although AFB1 and OTA were tested in a similar percentage, the majority of studies focused on nephrotoxicity, hepatotoxicity, immune toxicity and neurotoxicity in which oxidative stress, inflammation, structural damage and apoptosis were the main mechanisms of action reported. Conversely, several biological compounds were assayed in order to modulate mycotoxins damage mainly in the liver, brain, kidney and immune system. Among them, pumpkin, curcumin and fermented whey were the most employed. Although a clear progress has been made by using in vivo models, further research is needed to assess not only the toxicity of multiple mycotoxins contamination but also the effect of functional compounds mixture, thereby reproducing more realistic situations for human health risk assessment.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Álvaro Lázaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Mangiapelo L, Frangiamone M, Vila-Donat P, Paşca D, Ianni F, Cossignani L, Manyes L. Grape pomace as a novel functional ingredient: Mitigating ochratoxin A bioaccessibility and unraveling cytoprotective mechanisms in vitro. Curr Res Food Sci 2024; 9:100800. [PMID: 39040226 PMCID: PMC11261260 DOI: 10.1016/j.crfs.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Mycotoxins, secondary metabolites produced by molds, pose significant health risk through contamination of globally consumed cereals. Ochratoxin A (OTA), a prevalent mycotoxin in cereals, is associated with various health hazards, including immunotoxicity. This study explores the bioaccessibility of OTA in bread and its impact on the gastrointestinal barrier. A focus is placed on grape pomace (GP), a by-product of the wine industry, as a potential mitigator of OTA toxicity. Results demonstrate that GP reduces OTA bioaccessibility in the human gastrointestinal system from 94% to 81% at intestinal level, showing promise in limiting the absorption of the harmful toxin. Additionally, GP exhibits cytoprotective effects, enhancing cell viability and mitigating OTA-induced toxicity in both Caco-2 and Jurkat T cells. In view of the above, to understand the mechanisms by which OTA exhibits its toxic effects, flow cytometry was chosen as the main technique for the analysis of cell cycle, reactive oxygen species levels and mitochondrial parameters. Cytofluorimetric evaluation indicates GP's potential in limiting OTA-induced damage at cellular level. The study suggests that GP could serve as functional ingredient to reduce mycotoxin bioaccessibility and toxicity in cereal-based foods, offering a novel and promising approach to enhance food safety and protect public health. The finding highlights the potential of utilizing grape pomace in food formulations to mitigate mycotoxin contamination, providing a valuable contribution to the ongoing efforts to ensure the safety of globally consumed cereal products.
Collapse
Affiliation(s)
- Luciano Mangiapelo
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon, 1005, Lausanne, Switzerland
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| | - Denisia Paşca
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
- Bromatology, Hygiene, Nutrition, Department 3 - Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Federica Ianni
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| |
Collapse
|
5
|
Cao L, Fan L, Zhao C, Yin S, Hu H. Role of ferroptosis in food-borne mycotoxin-induced toxicities. Apoptosis 2024; 29:267-276. [PMID: 38001339 DOI: 10.1007/s10495-023-01907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Abstract
Contamination by toxic substances is a major global food safety issue, which poses a serious threat to human health. Mycotoxins are major class of food contaminants, mainly including aflatoxins (AFs), zearalenone (ZON), deoxynivalenol (DON), ochratoxin A (OTA), fumonisins (FBs) and patulin (PAT). Ferroptosis is a newly identified iron-dependent form of programmed or regulated cell death, which has been found to be involved in diverse pathological conditions. Recently, a growing body of evidence has shown that ferroptosis is implicated in the toxicities induced by certain types of food-borne mycotoxins, which provides novel mechanistic insights into mycotoxin-induced toxicities and paves the way for developing ferroptosis-based strategy to combat against toxicities of mycotoxins. In this review article, we summarize the key findings on the involvement of ferroptosis in mycotoxin-induced toxicities and propose issues that need to be addressed in future studies for better utilization of ferroptosis-based approach to manage the toxic effects of mycotoxin contamination.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yunamingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
6
|
Su C, Li J, Pan L, Zhang M, Chen Z, Lu M. Immunotoxicity and the mechanisms of aflatoxin B1-induced growth retardation in shrimp and alleviating effects of bile acids. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132266. [PMID: 37595470 DOI: 10.1016/j.jhazmat.2023.132266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins prevalent in the environment and food chain, posing severe health risks to humans and animals. Bile acids are natural detergents synthesized from cholesterol and play a key role in the excretion of toxins in vertebrates. Here, pacific white shrimp (Litopenaeus vannamei) served as an animal model to examine the toxicity mechanisms of AFB1 and assess the potential alleviating effects of bile acids against AFB1. Our results revealed that AFB1 exposure significantly inhibited the growth performance and immune response of shrimp, accompanied by AFB1 accumulation and histological damage. Mechanistically, AFB1-induced DNA damage activated DNA repair mechanisms and induced the arrest of cell cycle via the ATR-cyclin B/cdc2 pathway. Additionally, AFB1 directly suppressed the immune response and growth performance of shrimp by inhibiting Toll and IMD pathways and the secretion of digestive enzymes. Notably, dietary bile acids significantly reduced AFB1 accumulation and alleviated AFB1-induced growth retardation and immunotoxicity in shrimp, and CCKAR, ATR, and Relish may be key mediators of the alleviating effects of bile acids. Our study provided new insights into the toxicity mechanisms of AFB1 in invertebrates and highlighted the potential of bile acids to alleviate AFB1 toxicity.
Collapse
Affiliation(s)
- Chen Su
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Jinbao Li
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Luqing Pan
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China.
| | - Mengyu Zhang
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Zhifei Chen
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Mingxiang Lu
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| |
Collapse
|
7
|
Frangiamone M, Lozano M, Cimbalo A, Lazaro A, Font G, Manyes L. The Protective Effect of Pumpkin and Fermented Whey Mixture against AFB1 and OTA Immune Toxicity In Vitro. A Transcriptomic Approach. Mol Nutr Food Res 2023; 67:e2200902. [PMID: 37544930 DOI: 10.1002/mnfr.202200902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Indexed: 08/08/2023]
Abstract
SCOPE The aim of the study is to investigate in Jurkat cells the possible beneficial effect of pumpkin (P) and fermented milk whey (FW) mixture against aflatoxin B1 (AFB1) and ochratoxin A (OTA) induced alterations in gene expression profile. METHODS AND RESULTS Human T cells are exposed for 7 days to digested bread extracts containing P-FW mixture along with AFB1 and OTA, individually and in combination. The results of RNA sequencing show that AFB1 P-FW exposure resulted in 34 differentially expressed genes (DEGs) while 3450 DEGs are found in OTA P-FW exposure and 3264 DEGs in AFB1-OTA P-FW treatment. Gene ontology analysis reveals biological processes and molecular functions related to immune system and inflammatory response. Moreover, PathVisio analysis points to eicosanoid signaling via lipoxygenase as the main pathway altered by AFB1 P-FW exposure whereas interferon signaling is the most affected pathway after OTA P-FW and AFB1-OTA P-FW treatments. CONCLUSIONS The mitigation of genes and inherent pathways typically associated with the inflammatory response suggest not only the anti-inflammatory and protective role of P-FW mixture but also their possible application in food industry to counteract AFB1 and OTA toxic effects on human and animal health.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alvaro Lazaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| |
Collapse
|
8
|
Khoshbin Z, Sameiyan E, Zahraee H, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A simple and robust aptasensor assembled on surfactant-mediated liquid crystal interface for ultrasensitive detection of mycotoxin. Anal Chim Acta 2023; 1270:341478. [PMID: 37311610 DOI: 10.1016/j.aca.2023.341478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Here, a simple aptasensing approach is represented to sensitively detect ochratoxin A (OTA) as one of the most perilous mycotoxins with carcinogenic, nephrotoxic, teratogenic, and immunosuppressive sequels on human health. The aptasensor is based on the alteration in the orientational order of liquid crystal (LC) molecules at the surfactant-arranged interface. Homeotropic alignment of LCs is achieved by the interaction of the surfactant tail with LCs. By perturbing the alignment of LCs due to the electrostatic interaction of the aptamer strand with the surfactant head, a colorful polarized view of the aptasensor substrate is induced drastically. While OTA causes the re-orientation of LCs to a vertical state by forming an OTA-aptamer complex that induces darkness of the substrate. This study shows that the length of the aptamer strand impacts the efficiency of the aptasensor; longer strand results in the greater disruption of LCs, and therefore, increases the aptasensor sensitivity. Hence, the aptasensor can determine OTA in the linear concentration range of 0.1 fM-1 pM as low as 0.021 fM. The aptasensor is capable to monitor OTA in grape juice, coffee drink, corn, and human serum real samples. The proposed LC-based aptasensor provides a cost-effective, easy-to-carry, operator-independent, and user-friendly array with great potential to develop portable sensing gadgets for food quality control and health care monitoring.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Sameiyan
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|