1
|
He Y, Hu H, Liang X, Liang J, Li F, Zhou X. Gut microbes-muscle axis in muscle function and meat quality. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2885-4. [PMID: 40220074 DOI: 10.1007/s11427-024-2885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025]
Abstract
The concept of the gut microbes-muscle axis underscores the impact of intestinal microbiota on the muscular system, an area that is increasingly coming to light. However, current interpretations and applications of this concept remain underdeveloped. In this review, we concluded and discussed factors, such as short-chain fatty acids, amino acids, vitamins, bile acids, antibiotics, cytokines, hormones, and extracellular vesicles that mediate gut microbes-muscle crosstalk and influence the gut microbes-muscle axis. Additionally, we examined how the gut microbes-muscle axis affects muscle mass, muscle strength, muscle metabolism, as well as muscle oxidative and immune status. Furthermore, we reviewed the influence of the microbes-muscle axis on muscle fiber type transition, muscle fat deposition, and meat quality. These insights illuminate the potential mechanisms by which the gut microbes-muscle axis operates in humans and animals. Thus, this review provides a theoretical foundation for future research and offers practical guidance for its application in biomedical and livestock industries.
Collapse
Affiliation(s)
- Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hong Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xuqing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
2
|
Tian J, Wu Y, Zhao W, Zhang G, Zhang H, Xue L, Yang L, Zhang T, Gu Y, Zhang J. Transcriptomic and metabolomic-based revelation of the effect of fresh corn extract on meat quality of Jingyuan chicken. Poult Sci 2025; 104:104814. [PMID: 39848207 PMCID: PMC11795593 DOI: 10.1016/j.psj.2025.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
To investigate the effect of fresh corn extract (FCE) on chicken meat quality, 135-day-old Jingyuan chicken hens were fed diets containing different doses of FCE (CON, 0.3% FCE, 0.6% FCE and 0.9% FCE) until 180 day-old in this study. Meat performance measurements showed that the 0.6% FCE group of Jingyuan chickens had higher intramuscular fat (IMF), pressing loss (PL), amino acid and fatty acid contents (P < 0.05). Their breasts were collected for transcriptomic and metabolomic analyses (n=8), and 210 Differentially expressed genes (DEGs) and 29 Differentially expressed genes (DEMs) were obtained. Gene Ontology (GO) analyses of DEGs indicate multiple entries involved in IMF synthesis such as skeletal system development and cellular response to amino acid stimulation. Kyoto Encyclopedia of Genes and Genomes (GSEA-KEGG) analysis identified sphingolipid_metabolism and multiple genes affecting IMF deposition including SPHK1, CERS1, CERS6, GLB1L, SGMS2, UGT8, and UGCG. KEGG and metabolite correlation analyses of DEMs identified Aspartate, PI 38:5; PI(18:1/20:4), PI 36:3; PI(18:1/18:2), PI 36:2; PI(18:0/18:2), and PI 34:1; PI(16:0/18:1) as the likely major influences on IMF deposition in the DEMs. Correlation analysis revealed that shear force (SF) was significantly and positively correlated with Aspartate and CERS6; PL was significantly and positively correlated with SPHK1 and UGCG (P < 0.05). IMF was significantly and positively correlated with PI 34:1; PI (16:0/18:1), SPHK1 and UGCG; and flesh colour yellowness b* was significantly and positively correlated with SGMS2 (P < 0.05). The above results indicate that feeding a basal diet containing 0.6% FCE can improve the meat quality of Jingyuan chicken, which provides a theoretical basis for improving the meat quality of Jingyuan chicken.
Collapse
Affiliation(s)
- Jinli Tian
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanxu Wu
- Grain and oil product quality testing center, Ningxia Hui Autonomous Region, Yinchuan, 750000, China
| | - Wei Zhao
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Guojun Zhang
- Pengyang County animal disease prevention and control center, Ningxia Hui Autonomous Region, Guyuan, 756500, China
| | - Hu Zhang
- Pengyang County animal disease prevention and control center, Ningxia Hui Autonomous Region, Guyuan, 756500, China
| | - Lin Xue
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Lijuan Yang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant MolecuLar and CelluLar Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
3
|
Yibar A, Uzabaci E. Meta-analysis to predict the effects of probiotics on meat quality of broiler. J Anim Physiol Anim Nutr (Berl) 2024; 108:1616-1623. [PMID: 38885347 DOI: 10.1111/jpn.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The demand for chicken meat has surged globally due to its status as a primary protein source in human diets. However, ensuring high-quality meat products has become an increasingly important subject to consumers. In this study, 21 articles from PubMed and Web of Science databases published between 2005 and 2023 were examined to assess the influence of probiotic supplementation on broiler meat quality. The meta-analysis revealed significant findings across various meat quality parameters. Specifically, probiotics were found to significantly affect meat colour parameters, including redness, yellowness, and lightness, in both breast and thigh meat samples. Moreover, significant differences were observed in parameters such as water-holding capacity (p < 0.001), cook loss (p = 0.047), and shear force (p = 0.025) between control and probiotic groups. However, it's essential to note the considerable heterogeneity among the studies, emphasising the need for a cautious interpretation of the results. Despite this variability, the study underscores the potential of probiotics to positively influence broiler meat quality, highlighting avenues for further research and standardisation in poultry production practices. These findings also contribute to a better understanding of probiotics' role in improving meat quality and meeting consumer preferences for nutritious and high-quality poultry products.
Collapse
Affiliation(s)
- Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ender Uzabaci
- Department of Biometry, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
4
|
Zhi T, Ma A, Liu X, Chen Z, Li S, Jia Y. A multitissue transcriptomic analysis reveals a potential mechanism whereby Brevibacillus laterosporus S62-9 promotes broiler growth. Poult Sci 2024; 103:104050. [PMID: 39106700 PMCID: PMC11343061 DOI: 10.1016/j.psj.2024.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/09/2024] Open
Abstract
Brevibacillus laterosporus S62-9 has been shown to improve broiler growth performance and immunity. In the present study, we aimed to evaluate the effects of B. laterosporus S62-9 on the immunity and lipid metabolism of broilers by means of transcriptomic analysis. A total of 160 1-day-old broilers were randomly allocated to a S62-9 group, the diet of which was supplemented with 106 CFU/g B. laterosporus S62-9 daily, and a control group, which was not. After 42 d of feeding, the broilers in the S62-9 group had higher body mass (7.2%) and feed conversion ratio (5.19%) than the control group. Supplementation with B. laterosporus S62-9 resulted in lower serum total cholesterol and low-density lipoprotein-cholesterol concentrations and higher high-density lipoprotein-cholesterol concentrations. An analysis of the fatty acid composition of the broiler's thigh muscles revealed that the proportions of the unsaturated fatty acids myristoleic acid (C14:1) and arachidonic acid (C20:1) were higher for birds in the S62-9 group. Transcriptomic analysis also showed an upregulation of immunity-related genes in the S62-9 group. Gene Ontology functional enrichment analysis showed that the mitogen-activated protein kinase pathway was enriched in the liver, the defense response was enriched in the duodenum, and immunoglobulin-related entries were enriched in the jejunum of the S62-9 group. Furthermore, the expression of key genes involved in unsaturated fatty acid synthesis (SCD, encoding stearoyl-CoA desaturase) and fatty acid metabolism (HACD2, encoding 3-hydroxyacyl-CoA dehydratase 2) was upregulated in the liver, and the expression of genes associated with fat biosynthesis and accumulation, such as PLIN1, encoding perilipin 1, and FABP4, encoding fatty acid binding protein 4, was upregulated in the ileum of the birds in the S62-9 group. In summary, supplementation with B. laterosporus S62-9 could improve immune defense and the fatty acid metabolism of broiler chickens, thereby enhancing their disease resistance and promoting growth and development.
Collapse
Affiliation(s)
- Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiangfei Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
5
|
Yue 岳珂 K, Cao 曹芹芹 QQ, Shaukat A, Zhang 张才 C, Huang 黄淑成 SC. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: a review. NPJ Sci Food 2024; 8:62. [PMID: 39251637 PMCID: PMC11385947 DOI: 10.1038/s41538-024-00306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Poultry meat, an essential source of animal protein, requires stringent safety and quality measures to address public health concerns and growing international attention. This review examines both direct and indirect factors that compromise poultry meat quality in intensive farming systems. It highlights the integration of rapid and micro-testing with traditional methods to assess meat safety. The paper advocates for adopting probiotics, prebiotics, and plant extracts to improve poultry meat quality.
Collapse
Affiliation(s)
- Ke Yue 岳珂
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qin-Qin Cao 曹芹芹
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai Zhang 张才
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shu-Cheng Huang 黄淑成
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Silvia F, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Grammatikou P, Goumperis T, Kagkli DM, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Piffanelli P, Raffaello T, Xiftou K. Assessment of genetically modified maize MON 95275 (application GMFF-2022-5890). EFSA J 2024; 22:e8886. [PMID: 39099613 PMCID: PMC11292213 DOI: 10.2903/j.efsa.2024.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Genetically modified maize MON 95275 was developed to confer protection to certain coleopteran species. These properties were achieved by introducing the mpp75Aa1.1, vpb4Da2 and DvSnf7 expression cassettes. The molecular characterisation data and bioinformatic analyses reveal similarity to known toxins, which was further assessed. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 95275 and its conventional counterpart needs further assessment. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Mpp75Aa1.1 and Vpb4Da2 proteins and the DvSnf7 dsRNA and derived siRNAs as expressed in maize MON 95275 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 95275. In the context of this application, the consumption of food and feed from maize MON 95275 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 95275 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of maize MON 95275 material into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 95275. The GMO Panel concludes that maize MON 95275 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
7
|
Zhao W, Tian Y, Wang Y, Du J, Chen L, Gu T, Song M, Lu L, Sun C. Dietary effect of Dendrobium officinale leaves on chicken meat quality, fatty acid composition, and volatile compounds profile. Food Chem X 2024; 22:101330. [PMID: 38590632 PMCID: PMC10999829 DOI: 10.1016/j.fochx.2024.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Dendrobium officinale leaves (DOL) contain many active ingredients with various pharmacological effects, but are still ineffectively utilized. To investigate the feasibility of developing DOL as a feed additive, it is necessary to determine whether dietary supplementing DOL had any effect on meat quality and flavor. Our results showed that supplementation with DOL decreased the shear force while increased the pH and fat content in breast meat. Meat from DOL-fed chickens had higher levels of n-3 polyunsaturated fatty acids (PUFAs) and n-6 PUFAs, but lower n-6/n-3 ratios. Moreover, volatile compounds profile indicated that contents of aldehydes, including hexanal, pentanal, and heptanal, etc.), which were identified as the key volatile compounds in chicken meat, exhibited noteworthy rise in DOL intake groups. Octanal, 1-octen-3-ol, and 2-pentylfuran also contributed greatly to the meat overall aroma. These data provide a foundation for the comprehensive utilization of DOL as a feed additive with antibiotic substitution potential.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Jianke Du
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Minquan Song
- Zhejiang Tiefengtang Biotechnology Co., LTD, Wenzhou 325616, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Cao Y, Wang Z, Dai X, Zhang D, Zeng Y, Ni X, Pan K. Evaluation of probiotic properties of a Brevibacillus laterosporus strain. FASEB J 2024; 38:e23530. [PMID: 38466314 DOI: 10.1096/fj.202302408r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.
Collapse
Affiliation(s)
- Yuheng Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Liu C, Ma N, Feng Y, Zhou M, Li H, Zhang X, Ma X. From probiotics to postbiotics: Concepts and applications. ANIMAL RESEARCH AND ONE HEALTH 2023; 1:92-114. [DOI: 10.1002/aro2.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 01/05/2025]
Abstract
AbstractIn recent years, the important role of gut microbiota in promoting animal health and regulating immune function in livestock and poultry has been widely reported. The issue of animal health problems causes significant economic losses each year. Probiotics and postbiotics have been widely developed as additives due to their beneficial effects in balancing host gut microbiota, enhancing intestinal epithelial barrier, regulating immunity, and whole‐body metabolism. Probiotics and postbiotics are composed of complex ingredients, with different components and compositions having different effects, requiring classification for discussing their mechanisms of action. Probiotics and postbiotics have considerable prospects in preventing various diseases in the livestock industry and animal feed and medical applications. This review highlights the application value of probiotics and postbiotics as potential probiotic products, emphasizing their concept, mechanism of action, and application, to improve the productivity of livestock and poultry.
Collapse
Affiliation(s)
- Chunchen Liu
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Huahui Li
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xiujun Zhang
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| |
Collapse
|
10
|
Liu S, Tu Y, Sun J, Cai P, Zhou Y, Huang Y, Zhang S, Chen W, Wang L, Du M, You W, Wang T, Wang Y, Lu Z, Shan T. Fermented mixed feed regulates intestinal microbial community and metabolism and alters pork flavor and umami. Meat Sci 2023; 201:109177. [PMID: 37023593 DOI: 10.1016/j.meatsci.2023.109177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
This study aimed to determine the effects of fermented mixed feed (FMF) supplementation (0%, 5% and 10%) on the intestinal microbial community and metabolism, and the compositions of volatile flavor compounds and inosine monophosphate (IMP) contents in the longissimus thoracis. In this study, 144 finishing pigs (Duroc × Berkshire × Jiaxing Black) were randomly allocated to 3 groups with 4 replicate pens per group and 12 pigs per pen. The experiment lasted 38 days after 4 days of acclimation. The 16S rRNA gene sequences and an untargeted metabolomics analysis showed FMF altered the profiles of microbes and metabolites in the colon. Heracles flash GC e-nose analysis showed that 10% FMF (treatment 3) had a greater influence on the compositions of volatile flavor compounds than 5% FMF (treatment 2). Compared to 0% FMF (treatment 1), the contents of total aldehydes, (E,E)-2,4-nonadienal, dodecanal, nonanal and 2-decenal were significantly increased by treatment 3, and treatment 3 increased IMP concentrations and gene expressions related to its synthesis. Correlations analysis showed significantly different microbes and metabolites had strong correlations with the contents of IMP and volatile flavor compounds. In conclusion, treatment 3 regulated intestinal microbial community and metabolism, that in turn altered the compositions of volatile compounds, which contributed to improving pork flavor and umami.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Man Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Tenghao Wang
- Zhejiang Qinglian Food Co Ltd, Jiaxing, Zhejiang 314317, PR China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|