1
|
Lin R, Zang X, Zhang W, Tian Y, Fang Y. Gem-like starch granules engineered with different crystalline starches. Food Chem 2025; 469:142548. [PMID: 39708643 DOI: 10.1016/j.foodchem.2024.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The retrogradation property endows starch molecules with the unique ability to self-assemble crystals after encountering damage, which can restore the internal double helix structure to a limited extent. We devise a simple set of steps to grow perfect crystals of uniform size with different crystal systems in a given growth environment by first customizing the crystal seeds through enzymatic modification, and then exploiting the spontaneous recrystallization of starch. Optical microscopy confirmed the formation of gem-like starch granules (GSGs) in starches with 24.3 %-28.1 % amylose content, while no GSGs appeared in any of the other contents. FITR and XRD pattern revealed a shift in the double helix arrangement within the crystals, and the resultant change in starch crystal type from A-type to B-type provided theoretical support for the production of tetragonal, tetragonal, and hexagonal crystal systems. This work may provide a promising approach to the development of novel starch-based food/drug carriers.
Collapse
Affiliation(s)
- Ruikang Lin
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Zhejiang, Huzhou 313000, China; School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Zhejiang, Huzhou 313000, China.
| | - Wenjie Zhang
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Zhejiang, Huzhou 313000, China; School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ying Tian
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Zhejiang, Huzhou 313000, China; School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
2
|
Ding W, Liu Y, Liu Y, Wang G, Liu X, Peng X, Li H, Li Z. Research Progress in Nutritional Components, Biological Activity, and Processing and Utilization of Chenopodium quinoa Willd. ACS FOOD SCIENCE & TECHNOLOGY 2025; 5:411-427. [DOI: 10.1021/acsfoodscitech.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- Wei Ding
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yue Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yingqi Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Guizhen Wang
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xianjun Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xinli Peng
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Hao Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Zhandong Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| |
Collapse
|
3
|
Santos JF, Silva CWC, Silva BPG, Britto-Costa PH, Costa CS, Otubo L, Carbonari AW, Cabrera-Pasca GA. Enhancing Cassava Starch Bioplastics with Vismia guianensis Alcoholic Extract: Characterization with Potential Applications. Polymers (Basel) 2025; 17:419. [PMID: 39940621 PMCID: PMC11819721 DOI: 10.3390/polym17030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 02/16/2025] Open
Abstract
This work investigates the incorporation of Vismia guianensis alcoholic extract (EAVG) into cassava starch, with the aim of improving its bioplastic properties. Cassava starch was dissolved into distilled water and doped with 0.2%, 0.5%, and 1.0% EAVG under a temperature controlled at the gelatinization point (∼70 °C) and then cast to form bioplastics. The resulting samples were characterized via attenuated total reflectance/Fourier transform infrared spectroscopy (ATR/FTIR), thermogravimetric and differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), atomic force microscopy (AFM), and mechanical essays, providing insights into chemical composition, thermal stability, crystallinity, surface morphology, and mechanical properties. The results demonstrated that EAVG played an effective role, enhancing the flexibility and stability of the bioplastic with potential use in biomedical applications. Moreover, the results also showed significant improvements in mechanical and thermal properties, suggesting that EAVG is a valuable addition to bioplastics. Therefore, EAVG presents a pathway for advancing bioplastics with enhanced mechanical, thermal, and functional characteristics, with the potential for further advancements in these fields.
Collapse
Affiliation(s)
- Josiel F. Santos
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais—PPGCEM, Universidade Federal do Pará (UFPA), Ananindeua 67130-660, PA, Brazil;
| | - Crystian Willian C. Silva
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Barbara P. G. Silva
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Pedro H. Britto-Costa
- Research Center for Gas Innovation, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-030, SP, Brazil;
| | - Cleidilane S. Costa
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará (UFPA), Abaetetuba 684440-000, PA, Brazil;
| | - Larissa Otubo
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Artur W. Carbonari
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Gabriel A. Cabrera-Pasca
- Research Center for Gas Innovation, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-030, SP, Brazil;
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará (UFPA), Abaetetuba 684440-000, PA, Brazil;
| |
Collapse
|
4
|
Muñoz-Gimena PF, Aragón-Gutiérrez A, Blázquez-Blázquez E, Arrieta MP, Rodríguez G, Peponi L, López D. Avocado Seed Starch-Based Films Reinforced with Starch Nanocrystals. Polymers (Basel) 2024; 16:2868. [PMID: 39458696 PMCID: PMC11511395 DOI: 10.3390/polym16202868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Biopolymers derived from biomass can provide the advantages of both biodegradability and functional qualities from a circular economy point of view, where waste is transformed into raw material. In particular, avocado seeds can be considered an interesting residue for biobased packaging applications due to their high starch content. In this work, avocado seed starch (ASS)-based films containing different glycerol concentrations were prepared by solvent casting. Films were also reinforced with starch nanocrystals (SNCs) obtained through the acid hydrolysis of ASS. The characterization of the extracted starch and starch nanocrystals by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis has been reported. Adding 1% of SNCs increased elastic modulus by 112% and decreased water vapor permeability by 30% with respect to neat matrix. Interestingly, the bioactive compounds from the avocado seed provided the films with high antioxidant capacity. Moreover, considering the long time required for traditional plastic packaging to degrade, all of the ASS-based films disintegrated within 48 h under lab-scale composting conditions. The results of this work support the valorization of food waste byproducts and the development of reinforced biodegradable materials for potential use as active food packaging.
Collapse
Affiliation(s)
- Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Alejandro Aragón-Gutiérrez
- Grupo de Tecnología de Materiales y Envases, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada Al CSIC, C/Albert Einstein 1, Paterna, 46980 Valencia, Spain;
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| | - Gema Rodríguez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| |
Collapse
|
5
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Wang Y, Ju J, Diao Y, Zhao F, Yang Q. The application of starch-based edible film in food preservation: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-34. [PMID: 38712440 DOI: 10.1080/10408398.2024.2349735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Pan Z, Zhong W, Xu J, Li D, Lin J, Wu W, Pang J, Wu C. Effects of oregano essential oil Pickering emulsion and ZnO nanoparticles on the properties and antibacterial activity of konjac glucomannan/carboxymethyl chitosan nanocomposite films. RSC Adv 2024; 14:6548-6556. [PMID: 38390510 PMCID: PMC10882515 DOI: 10.1039/d3ra07845k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Green and environmentally friendly natural bio-based food packaging films are increasingly favored by consumers. This study incorporated carboxylated-cellulose nanocrystal stabilized oregano essential oil (OEO) Pickering emulsion and ZnO nanoparticles (ZNPs) into konjac glucomannan (KGM)/carboxymethyl chitosan (CMCS) complexes to develop active food packaging films. The effects of OEO Pickering emulsion and ZNPs on the physical, structural, and antimicrobial activities of the nanocomposite films were evaluated. The OEO Pickering emulsion had a droplet size of 48.43 ± 3.56 μm and showed excellent dispersion and stability. Fourier transform infrared and X-ray diffraction analyses suggested that the interactions between the Pickering emulsion, ZNPs and KGM/CMCS matrix were mainly through hydrogen bonding. SEM observations confirmed that the Pickering emulsion and ZNPs were well incorporated into the KGM/CMCS matrix, forming tiny pores within the nanocomposite films. The incorporation of the OEO Pickering emulsion and/or ZNPs obviously increased the light and water vapor barrier ability, thermal stability, mechanical strength and antimicrobial properties of the KGM/CMCS nanocomposite film. Notably, KGM/CMCS/ZNPs/OEO Pickering emulsion films exhibited the highest barrier, and mechanical and antimicrobial activities due to the synergistic effect between the OEO Pickering emulsion and ZNPs. These results suggest that KGM/CMCS/ZNPs/OEO Pickering emulsion films can be utilized as novel active food packaging materials to extend the shelf life of packaged foods.
Collapse
Affiliation(s)
- Zhibin Pan
- Fujian Vocational College of Bioengineering No. 42, Hongshan Bridge Zhongdian, Cangshan District Fuzhou 350007 China
| | - Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Junhan Lin
- Fujian Vocational College of Bioengineering No. 42, Hongshan Bridge Zhongdian, Cangshan District Fuzhou 350007 China
| | - Weibin Wu
- Fujian Vocational College of Bioengineering No. 42, Hongshan Bridge Zhongdian, Cangshan District Fuzhou 350007 China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| |
Collapse
|
8
|
Ramos GVC, Rabelo MEA, de Pinho SC, Valencia GA, Sobral PJDA, Moraes ICF. Dual Modification of Cassava Starch Using Physical Treatments for Production of Pickering Stabilizers. Foods 2024; 13:327. [PMID: 38275694 PMCID: PMC10815648 DOI: 10.3390/foods13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Cassava starch nanoparticles (SNP) were produced using the nanoprecipitation method after modification of starch granules using ultrasound (US) or heat-moisture treatment (HMT). To produce SNP, cassava starches were gelatinized (95 °C/30 min) and precipitated after cooling, using absolute ethanol. SNPs were isolated using centrifugation and lyophilized. The nanoparticles produced from native starch and starches modified using US or HMT, named NSNP, USNP and HSNP, respectively, were characterized in terms of their main physical or functional properties. The SNP showed cluster plate formats, which were smooth for particles produced from native starch (NSNP) and rough for particles from starch modified with US (USNP) or HMT (HSNP), with smaller size ranges presented by HSNP (~63-674 nm) than by USNP (~123-1300 nm) or NSNP (~25-1450 nm). SNP had low surface charge values and a V-type crystalline structure. FTIR and thermal analyses confirmed the reduction of crystallinity. The SNP produced after physical pretreatments (US, HMT) showed an improvement in lipophilicity, with their oil absorption capacity in decreasing order being HSNP > USNP > NSNP, which was confirmed by the significant increase in contact angles from ~68.4° (NSNP) to ~76° (USNP; HSNP). A concentration of SNP higher than 4% may be required to produce stability with 20% oil content. The emulsions produced with HSNP showed stability during the storage (7 days at 20 °C), whereas the emulsions prepared with NSNP exhibited phase separation after preparation. The results suggested that dual physical modifications could be used for the production of starch nanoparticles as stabilizers for Pickering emulsions with stable characteristics.
Collapse
Affiliation(s)
- Giselle Vallim Correa Ramos
- Postgraduate Program in Materials Science and Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| | - Marya Eduarda Azelico Rabelo
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| | - Samantha Cristina de Pinho
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Izabel Cristina Freitas Moraes
- Postgraduate Program in Materials Science and Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| |
Collapse
|
9
|
Zeng YF, Chen YY, Deng YY, Zheng C, Hong CZ, Li QM, Yang XF, Pan LH, Luo JP, Li XY, Zha XQ. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr Polym 2024; 323:121389. [PMID: 37940283 DOI: 10.1016/j.carbpol.2023.121389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
The present work aimed to develop a novel bioactive edible film prepared by adding quercetin-encapsulated carboxymethyl lotus root starch nanoparticles (QNPs),gellan gum and lotus root starch. The physicochemical characteristics, preservation effect and mechanism on grapes of the prepared film were investigated. SEM results showed that QNPs (5 %) were dispersed uniformly within lotus root starch matrix, indicating the formation of a stable composite nanoparticle film. In addition, the incorporation of QNPs (5 %) effectively improved the mechanical strength, thermal stability, barrier property and antioxidant activity of QNPs/starch film. Moreover, compared with the control, the QNPs/starch (5 %) film showed effective preservation effect on grapes during 21 days of storage at room temperature, based on the characterization by grape appearance, weight loss, firmness, and titratable acidity. Further studies found that QNPs/starch (5 %) film could exhibit enhanced antioxidant activity and potent anti-fungal ability against Botrytis cinerea, thus extending grape shelf life. In conclusion, the obtained QNPs/starch (5 %) film presented a promising application as an edible packing material for fruit preservation by antioxidant and preventing Botrytis cinerea contamination.
Collapse
Affiliation(s)
- Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Fei Yang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
10
|
Li C, Guo Y, Chen M, Wang S, Gong H, Zuo J, Zhang J, Dai L. Recent preparation, modification and application progress of starch nanocrystals: A review. Int J Biol Macromol 2023; 250:126122. [PMID: 37541469 DOI: 10.1016/j.ijbiomac.2023.126122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Due to the advantages of wide sources, high biocompatibility and favorable biodegradability, starch nanocrystals (SNCs) have gradually attracted attention and have bright development prospects in food, agriculture, materials, medicine and other fields. However, the traditional preparation method of SNCs is time-consuming and inefficient, and the physicochemical properties cannot fully meet the needs of multiple applications. Fortunately, the unique onion-like structure of starch granules and the large number of hydroxyl groups present on the surface entitle SNCs to efficient preparation and modification. This paper comprehensively reviewed the improvement methods of SNCs preparation process in recent years, and the advantages and disadvantages of the two improvement strategies were compared. Besides, the importance of introducing different pretreatment methods into the SNCs preparation process was emphasized. It also focused on the different modification treatment and application progress of SNCs, especially in the starch-based surface coating of fruits and vegetables. The information will contribute to further improve the preparation efficiency and physicochemical properties of SNCs, and ultimately expand the application field.
Collapse
Affiliation(s)
- Changwei Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yifan Guo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Min Chen
- Ningbo Fotile Kitchen Ware Company, Ningbo 315336, Zhejiang, China
| | - Shuhan Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongtong Gong
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jingmin Zuo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Zhang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, Zhejiang, China
| | - Limin Dai
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
11
|
Lomelí-Ramírez MG, Reyes-Alfaro B, Martínez-Salcedo SL, González-Pérez MM, Gallardo-Sánchez MA, Landázuri-Gómez G, Vargas-Radillo JJ, Diaz-Vidal T, Torres-Rendón JG, Macias-Balleza ER, García-Enriquez S. Thermoplastic Starch Biocomposite Films Reinforced with Nanocellulose from Agave tequilana Weber var. Azul Bagasse. Polymers (Basel) 2023; 15:3793. [PMID: 37765647 PMCID: PMC10534575 DOI: 10.3390/polym15183793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, cellulose nanocrystals (CNCs), bleached cellulose nanofibers (bCNFs), and unbleached cellulose nanofibers (ubCNFs) isolated by acid hydrolysis from Agave tequilana Weber var. Azul bagasse, an agro-waste from the tequila industry, were used as reinforcements in a thermoplastic starch matrix to obtain environmentally friendly materials that can substitute contaminant polymers. A robust characterization of starting materials and biocomposites was carried out. Biocomposite mechanical, thermal, and antibacterial properties were evaluated, as well as color, crystallinity, morphology, rugosity, lateral texture, electrical conductivity, chemical identity, solubility, and water vapor permeability. Pulp fibers and nanocelluloses were analyzed via SEM, TEM, and AFM. The water vapor permeability (WVP) decreased by up to 20.69% with the presence of CNCs. The solubility decreases with the presence of CNFs and CNCs. The addition of CNCs and CNFs increased the tensile strength and Young's modulus and decreased the elongation at break. Biocomposites prepared with ubCNF showed the best tensile mechanical properties due to a better adhesion with the matrix. Images of bCNF-based biocomposites demonstrated that bCNFs are good reinforcing agents as the fibers were dispersed within the starch film and embedded within the matrix. Roughness increased with CNF content and decreased with CNC content. Films with CNCs did not show bacterial growth for Staphylococcus aureus and Escherichia coli. This study offers a new theoretical basis since it demonstrates that different proportions of bleached or unbleached nanofibers and nanocrystals can improve the properties of starch films.
Collapse
Affiliation(s)
- María Guadalupe Lomelí-Ramírez
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Benjamín Reyes-Alfaro
- Department of Chemical Engineering, Michoacana University of Saint Nicholas of Hidalgo, Morelia 58030, Mexico;
| | - Silvia Lizeth Martínez-Salcedo
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - María Magdalena González-Pérez
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Manuel Alberto Gallardo-Sánchez
- Department of Civil Engineering and Topography, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico;
| | - Gabriel Landázuri-Gómez
- Department of Chemical Engineering, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico; (G.L.-G.); (T.D.-V.)
| | - J. Jesús Vargas-Radillo
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Tania Diaz-Vidal
- Department of Chemical Engineering, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico; (G.L.-G.); (T.D.-V.)
| | - José Guillermo Torres-Rendón
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| | - Emma Rebeca Macias-Balleza
- Department of Chemical Engineering, University Center for Exact Sciences and Engineering, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara 44430, Mexico; (G.L.-G.); (T.D.-V.)
| | - Salvador García-Enriquez
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.G.L.-R.); (S.L.M.-S.); (M.M.G.-P.); (J.J.V.-R.); (J.G.T.-R.)
| |
Collapse
|
12
|
Żołek-Tryznowska Z, Bednarczyk E, Tryznowski M, Kobiela T. A Comparative Investigation of the Surface Properties of Corn-Starch-Microfibrillated Cellulose Composite Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093320. [PMID: 37176202 PMCID: PMC10179309 DOI: 10.3390/ma16093320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Starch-based materials seem to be an excellent alternative for conventional plastics used in various applications. Microfibralted cellulose can be used to improve the surface properties of starch-based materials. This study aims to analyze the surface properties of starch-microfibrillated cellulose materials. The surface properties of films were evaluated by ATR-FTIR, surface roughness, water wettability, and surface free energy. The surface homogeneity between corn starch and microfibrillated cellulose (MFC) fibers was confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Microscopic analyses of the film surfaces confirm good compatibility of starch and MFC. The addition of MFC increased the surface roughness and polarity of developed starch/MFC materials. The surface roughness parameter has increased from 1.44 ± 0.59 to 2.32 ± 1.13 for pure starch-based materials and starch/MFC material with the highest MFC content. The WCA contact angle has decreased from 70.3 ± 2.4 to 39.1 ± 1.0°, while the surface free energy is 46.2 ± 3.4 to 66.2 ± 1.5 mJ·m-2, respectively. The findings of this study present that surface structure starch/MFC films exhibit homogeneity, which would be helpful in the application of MFC/starch materials for biodegradable packaging purposes.
Collapse
Affiliation(s)
- Zuzanna Żołek-Tryznowska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| | - Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| | - Mariusz Tryznowski
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland
| |
Collapse
|