1
|
Šola I, Poljuha D, Pavičić I, Jurinjak Tušek A, Šamec D. Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources. Foods 2025; 14:416. [PMID: 39942008 PMCID: PMC11817548 DOI: 10.3390/foods14030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Climate change is reshaping global agriculture by altering temperature regimes and other environmental conditions, with profound implications for food security and agricultural productivity. This review examines how key environmental stressors-such as extreme temperatures, water scarcity, increased salinity, UV-B radiation, and elevated concentrations of ozone and CO2-impact the nutritional quality and bioactive compounds in plant-based foods. These stressors can modify the composition of essential nutrients, particularly phytochemicals, which directly affect the viability of specific crops in certain regions and subsequently influence human dietary patterns by shifting the availability of key food resources. To address these challenges, there is growing interest in resilient plant species, including those with natural tolerance to stress and genetically modified variants, as well as in alternative protein sources derived from plants. Additionally, unconventional food sources, such as invasive plant species and algae, are being explored as sustainable solutions for future nutrition.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (D.P.); (I.P.)
| | - Ivana Pavičić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (D.P.); (I.P.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Dunja Šamec
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| |
Collapse
|
2
|
Šola I, Gmižić D, Miškec K, Ludwig-Müller J. Impact of Water Stress on Metabolic Intermediates and Regulators in Broccoli Sprouts, and Cellular Defense Potential of Their Extracts. Int J Mol Sci 2025; 26:632. [PMID: 39859346 PMCID: PMC11765553 DOI: 10.3390/ijms26020632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Drought and flood (water stress) alter plant metabolism, impacting the phytochemical content and biological effects. Using spectrophotometric, HPLC, and electrophoretic methods, we analyze the effects of water stress on broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) sprouts. Drought and flood differently influenced chlorophylls, carotenoids, and porphyrins, with drought having a stronger inhibitory effect on chlorophyll a, total chlorophyll, and porphyrins. Carotenoids and glucosinolates increased under drought but decreased with flooding, suggesting that these compounds play a crucial role in drought tolerance. Nitrate increased with drought from 13.11 ± 1.05 mg/g dw to 22.41 ± 1.20 mg/g dw but decreased under flooding to 5.17 ± 1.03 mg/g dw, and oxalic acid was reduced by drought only (from 48.94 ± 1.30 mg/g dw to 46.43 ± 0.64 mg/g dw). Flood reduced proteins by 29%, phenolics by 15%, flavonoids by 10%, flavonols by 11%, tannins by 36%, and proanthocyanidins by 19%, while drought decreased flavonoids by 23%. Total phenolics and proanthocyanidins were increased by drought by 29% and 7%, respectively, while flooding decreased hydroxycinnamic acids by 13%. Both stress types influenced individual polyphenols differently: drought diminished ferulic acid by 17% and increased sinapic acid by 30%, while flooding reversed these effects and enhanced kaempferol by 22%. These compounds, along with proline (which increased by 139% under drought), emerged as biomarkers of water stress. Flood impacted antioxidant capacity more significantly, while drought-stressed broccoli extracts better protected plasmid DNA against oxidative damage. These findings underline the metabolic plasticity of broccoli sprouts and their potential in targeted crop management for water stress resilience.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Daria Gmižić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Karlo Miškec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Jutta Ludwig-Müller
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
3
|
Šola I, Vujčić Bok V, Popović M, Gagić S. Phytochemical Composition and Functional Properties of Brassicaceae Microgreens: Impact of In Vitro Digestion. Int J Mol Sci 2024; 25:11831. [PMID: 39519385 PMCID: PMC11546364 DOI: 10.3390/ijms252111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of this study was to compare the concentration of phenolic compounds, glucosinolates, proteins, sugars and vitamin C between kohlrabi (Brassica oleracea var. acephala gongylodes), Savoy cabbage (B. oleracea sabauda), Brussels sprouts (B. oleracea gemmifera), cauliflower (B. oleracea botrytis), radish (Raphanus sativus) and garden cress (Lepidium sativum) microgreens for their antioxidant and hypoglycemic potential. In addition, we applied an in vitro-simulated system of human digestion in order to track the bioaccessibility of the selected phenolic representatives, and the stability of the microgreens' antioxidant and hypoglycemic potential in terms of α-amylase and α-glucosidase inhibition after each digestion phase. Using spectrophotometric and RP-HPLC methods with statistical analyses, we found that garden cress had the lowest soluble sugar content, while Savoy cabbage and Brussels sprouts had the highest glucosinolate levels (76.21 ± 4.17 mg SinE/g dm and 77.73 ± 3.33 mg SinE/g dm, respectively). Brussels sprouts were the most effective at inhibiting protein glycation (37.98 ± 2.30% inhibition). A very high positive correlation (r = 0.830) between antiglycation potential and conjugated sinapic acid was recorded. For the first time, the antidiabetic potential of microgreens after in vitro digestion was studied. Kohlrabi microgreens best inhibited α-amylase in both initial and intestinal digestion (60.51 ± 3.65% inhibition and 62.96 ± 3.39% inhibition, respectively), and also showed the strongest inhibition of α-glucosidase post-digestion (19.22 ± 0.08% inhibition). Brussels sprouts, cauliflower, and radish had less stable α-glucosidase than α-amylase inhibitors during digestion. Kohlrabi, Savoy cabbage, and garden cress retained inhibition of both enzymes after digestion. Kohlrabi antioxidant capacity remained unchanged after digestion. The greatest variability was seen in the original samples, while the intestinal phase resulted in the most convergence, indicating that digestion reduced differences between the samples. In conclusion, this study highlights the potential of various microgreens as sources of bioactive compounds with antidiabetic and antiglycation properties. Notably, kohlrabi microgreens demonstrated significant enzyme inhibition after digestion, suggesting their promise in managing carbohydrate metabolism and supporting metabolic health.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
| | - Valerija Vujčić Bok
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
- Division for Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Maja Popović
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
| | - Sanja Gagić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
- Division for Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Zhang J, Wang C, Fang W, Yang R, Yin Y. Production of High-Quality Wheat Sprouts of Strong Antioxidant Capacity: Process Optimization and Regulation Mechanism of Red Light Treatment. Foods 2024; 13:2703. [PMID: 39272470 PMCID: PMC11395093 DOI: 10.3390/foods13172703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Light treatment is an innovative method to enhance the synthesis of secondary metabolites in plants and improve the quality of plant-based food ingredients. This study investigated the effects of red light treatment on the physiological and biochemical changes during wheat germination, aiming to produce high-quality wheat sprouts with strong antioxidant capacity. Using response surface methodology, the study optimized the conditions for phenolic accumulation in wheat sprouts under red light treatment and explored the molecular mechanisms behind the enhancement of total phenolic content (TPC) and quality. The results indicated that red light treatment significantly increased the TPC in wheat sprouts. The highest TPC, reaching 186.61 μg GAE/sprout, was observed when wheat sprouts were exposed to red light at an intensity of 412 μmol/m²/s for 18.2 h/d over four days. Compared to no light, red light treatment significantly increased the content of photosynthetic pigments (chlorophyll and carotenoids). Red light treatment notably heightened the levels of both free and bound phenolic in the germinating wheat. Red light treatment markedly boosted the activities and relative gene expression levels of enzymes related to phenolic biosynthesis, including phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate-CoA ligase. Additionally, red light treatment enhanced the antioxidant capacity of wheat sprouts by improving the activity and gene expression of four key antioxidant enzymes, thereby promoting growth and germination. This research suggested that red light treatment is an effective strategy for stimulating total phenolic biosynthesis, enhancing antioxidant capacity, and producing highly nutritious wheat sprouts, thus laying the groundwork for developing total phenolic-enriched wheat sprouts as valuable food ingredients in the future.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chunping Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Šola I, Gmižić D, Pinterić M, Tot A, Ludwig-Müller J. Adjustments of the Phytochemical Profile of Broccoli to Low and High Growing Temperatures: Implications for the Bioactivity of Its Extracts. Int J Mol Sci 2024; 25:3677. [PMID: 38612494 PMCID: PMC11011926 DOI: 10.3390/ijms25073677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Climate change causes shifts in temperature patterns, and plants adapt their chemical content in order to survive. We compared the effect of low (LT) and high (HT) growing temperatures on the phytochemical content of broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens and the bioactivity of their extracts. Using different spectrophotometric, LC-MS/MS, GC-MS, and statistical methods, we found that LT increased the total phenolics and tannins in broccoli. The total glucosinolates were also increased by LT; however, they were decreased by HT. Soluble sugars, known osmoprotectants, were increased by both types of stress, considerably more by HT than LT, suggesting that HT causes a more intense osmotic imbalance. Both temperatures were detrimental for chlorophyll, with HT being more impactful than LT. HT increased hormone indole-3-acetic acid, implying an important role in broccoli's defense. Ferulic and sinapic acid showed a trade-off scheme: HT increased ferulic while LT increased sinapic acid. Both stresses decreased the potential of broccoli to act against H2O2 damage in mouse embryonal fibroblasts (MEF), human keratinocytes, and liver cancer cells. Among the tested cell types treated by H2O2, the most significant reduction in ROS (36.61%) was recorded in MEF cells treated with RT extracts. The potential of broccoli extracts to inhibit α-amylase increased following both temperature stresses; however, the inhibition of pancreatic lipase was increased by LT only. From the perspective of nutritional value, and based on the obtained results, we conclude that LT conditions result in more nutritious broccoli microgreens than HT.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Daria Gmižić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Marija Pinterić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ana Tot
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia
| | - Jutta Ludwig-Müller
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
6
|
Pineda M, Barón M, Pérez-Bueno ML. Diverse projected climate change scenarios affect the physiology of broccoli plants to different extents. PHYSIOLOGIA PLANTARUM 2024; 176:e14269. [PMID: 38528313 DOI: 10.1111/ppl.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Climate change caused by global warming involves crucial plant growth factors such as atmospheric CO2 concentration, ambient temperature or water availability. These stressors usually co-occur, causing intricate alterations in plant physiology and development. This work focuses on how elevated atmospheric CO2 levels, together with the concomitant high temperature, would affect the physiology of a relevant crop, such as broccoli. Particular attention has been paid to those defence mechanisms that contribute to plant fitness under abiotic stress. Results show that both photosynthesis and leaf transpiration were reduced in plants grown under climate change environments compared to those grown under current climate conditions. Furthermore, an induction of carbohydrate catabolism pointed to a redistribution from primary to secondary metabolism. This result could be related to a reinforcement of cell walls, as well as to an increase in the pool of antioxidants in the leaves. Broccoli plants, a C3 crop, grown under an intermediate condition showed activation of those adaptive mechanisms, which would contribute to coping with abiotic stress, as confirmed by reduced levels of lipid peroxidation relative to current climate conditions. On the contrary, the most severe climate change scenario exceeded the adaptive capacity of broccoli plants, as shown by the inhibition of growth and reduced vigour of plants. In conclusion, only a moderate increase in atmospheric CO2 concentration and temperature would not have a negative impact on broccoli crop yields.
Collapse
Affiliation(s)
- Mónica Pineda
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Matilde Barón
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - María Luisa Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
- Department of Plant Physiology, Facultad de Farmacia, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Uzelac M, Sladonja B, Šola I, Dudaš S, Bilić J, Famuyide IM, McGaw LJ, Eloff JN, Mikulic-Petkovsek M, Poljuha D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia pseudoacacia L. Leaf and Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2715. [PMID: 37514330 PMCID: PMC10385011 DOI: 10.3390/plants12142715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Black locust (Robinia pseudoacacia L.), an invasive tree in Europe, commonly known for its negative impact on biodiversity, is a rich source of phenolic compounds recognized in traditional medicine. Since the metabolite profile depends on the environment and climate, this study aimed to provide the first LC-MS phytochemical screening of the black locust from the Istria region (Croatia). The compounds were extracted from leaves and flowers with 70% ethanol and 80% methanol. Total phenolics (TP) and flavonoids (TF), as well as antioxidant capacity (AC) measured by ABTS (17.49-146.41 mg TE/g DW), DPPH (24.67-118.49 mg TE/g DW), and FRAP (7.38-77.53 mg TE/g DW) assays, were higher in leaf than in flower extracts. Higher TP and total non-flavonoid (TNF) values were displayed in ethanolic than in methanolic extracts. In total, 64 compounds were identified, of which flavonols (20) and hydroxycinnamic acid derivatives (15) were the most represented. Flavanols such as catechin dominated in leaf extracts, followed by flavonols, with kaempferol glucuronyl rhamnosyl hexosides as the main compound, respectively. Flower extracts had the highest share of flavones, followed by ellagitannins, with luteolin dirhamnosyl hexosides and vescalagin, respectively, being predominant. The extracts had good quorum sensing, biofilm formation prevention, and eradicating capacity. The results provided new insights into the phytochemical properties of R. pseudoacacia as the first step toward its potential pharmaceutical use.
Collapse
Affiliation(s)
- Mirela Uzelac
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Barbara Sladonja
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavica Dudaš
- Agricultural Department, Polytechnic of Rijeka, Karla Huguesa 6, 52440 Poreč, Croatia
| | - Josipa Bilić
- METRIS Research Centre, Istrian University of Applied Sciences, Zagrebačka 30, 52100 Pula, Croatia
| | - Ibukun M Famuyide
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|