1
|
Taşkoparan Ş, Altınay C, Barbaros Özer H. Recent updates of probiotic dairy-based beverages. Food Funct 2025; 16:1656-1669. [PMID: 39962909 DOI: 10.1039/d4fo06322h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
There is a rapid paradigm shift in the food consumption habits of consumers globally. The interest in healthier, safer, minimally processed and nature-identical foods is the driving force of this paradigm shift. Although the roots of this consumer trend go back further, especially the Covid-19 pandemic has contributed to the acceleration of this process. The effects of probiotics on human health have been known for many years. The commercial success of some probiotic microorganism strains, supported by clinical studies, is also evident. Probiotic microorganisms can be found in commercial products in a wide range of forms including powder, tablets or incorporated into liquid or solid food matrices. Milk and dairy products are suitable vehicles for the delivery of probiotics into the human body. Apart from well-established dairy-based probiotic foods including yogurt and yogurt-type beverages, in recent years some dairy products supplemented or enhanced with postbiotics and paraprobiotics are gaining popularity. The incorporation of next-generation probiotics in probiotic beverage formulations has also attracted the attention of researchers. The current state-of-the art for the utilization of next-generation probiotics, postbiotics and paraprobiotics in dairy-based probiotic beverages is the main focus of this review. Conventional milk-, whey- and buttermilk-based probiotic beverages are also covered.
Collapse
Affiliation(s)
- Şevval Taşkoparan
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - Canan Altınay
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - H Barbaros Özer
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| |
Collapse
|
2
|
Bhatia R, Chauhan K, Taneja NK, Kumar V, Singh G, Kaur K, Oberoi HS. Development of whey protein beverage incorporating encapsulated probiotic strain Lactiplantibacillus rhamnosus NCDC 347 and its physico-chemical characteristics. Z NATURFORSCH C 2024; 79:387-395. [PMID: 38940219 DOI: 10.1515/znc-2024-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
In the present study, encapsulated strain Lactiplantibacillus rhamnosus NCDC 347 was used to prepare a novel whey protein-based beverage. The encapsulation process utilized skimmed milk powder matrix and evaluated strain viability, physico-chemical properties, sensory assessment, and shelf-life stability. Encapsulated L. rhamnosus NCDC 347 within skim milk powder maintained viability at 8.0 log CFU/g, forming spherical microcapsules with 1-12 µm concavities. Probiotic addition to whey protein beverages maintained pH and acidity within desired ranges. Physico-chemical analysis showed protein content of 8.71 ± 0.21 % to 10.05 ± 0.42 %, fat content of 0.56 ± 0.24 % to 0.67 ± 0.13 %, viscosity of 5.14 pa/s, and total soluble solids (TSS) of 14.42 ± 0.31 to 16.16 ± 0.23° Brix. The shelf-life study revealed that the beverage remained stable for up to 90 days with no significant changes (p > 0.05) in sensory analysis. The sensory analysis scored the test sample's acceptability at 7.3 ± 0.41. The protein-rich probiotic drink exhibited favorable sensory qualities. Overall, incorporating encapsulated probiotic strain L. rhamnosus NCDC 347 into whey protein beverages could address daily protein requirements and enhance health.
Collapse
Affiliation(s)
- Rishi Bhatia
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management-Kundli Sonepat, Sonepat, Haryana, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management-Kundli Sonepat, Sonepat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management-Kundli, Sonepat, Haryana, India
| | - Vikram Kumar
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management-Kundli, Sonepat, Haryana, India
| | | | - Kuljinder Kaur
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management-Kundli, Sonepat, Haryana, India
| | - Harinder Singh Oberoi
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management-Kundli, Sonepat, Haryana, India
| |
Collapse
|
3
|
Szafrańska JO, Waraczewski R, Bartoń M, Wesołowska-Trojanowska M, Maziejuk W, Nowak P, Sołowiej BG. The effect of organic fruit juices on physicochemical, microbiological and antioxidative aspects of organic goat's and cow's fermented whey beverages produced on laboratory and industrial scale. J Dairy Sci 2024:S0022-0302(24)01131-7. [PMID: 39265835 DOI: 10.3168/jds.2024-25350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024]
Abstract
Fermented milk beverages have been known for years and are characterized by excellent health-promoting properties. Therefore, consumer attention has been drawn to this product type in recent years. In the presented research, the technology of production in laboratory and industrial scale of controlled fermentation of whey beverages containing sweet and sour organic cow's or goat's whey with the addition of organic fruit juices (apple, blackcurrant juice or Kamchatka berry), has been described. Food production on a laboratory scale involves small batch processes designed for experimentation and refinement, often with precise control over variables and conditions. In contrast, industrial-scale food production in enterprises focuses on large volume output with an emphasis on efficiency, consistency, and adherence to regulatory standards for mass consumption. In this study was examined the amino acid content and nutritional value of the obtained products. Tests were carried out on fermented whey drinks' microbiology and antioxidant properties. The significance was determined using an ANOVA (ANOVA)-each prepared drink was characterized by better antioxidant properties and nutritional values compared with product without juice addition. Microbiological examination proved that only one product was not fit for consumption according to the Polish norm. Using whey (goat and cow) as a base for a fermented beverage with enhanced health benefits is a positive step toward using products commonly regarded as waste.
Collapse
Affiliation(s)
- J O Szafrańska
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland.
| | - R Waraczewski
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| | - M Bartoń
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| | - M Wesołowska-Trojanowska
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Sciences and Bio-technology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| | - W Maziejuk
- Family Organic Farm "Figa" Waldemar and Tomasz Maziejuk, Mszana 44/2, 38-454 Tylawa, Poland
| | - P Nowak
- Manufacturer of BIO Juices NFC Korab Garden Sp. z o. o., Samoklęski, Kolonia Druga 21A, 21-132 Kamionka, Poland
| | - B G Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Poland, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
4
|
Darko HSO, Ismaiel L, Fanesi B, Pacetti D, Lucci P. Current Trends in Food Processing By-Products as Sources of High Value-Added Compounds in Food Fortification. Foods 2024; 13:2658. [PMID: 39272424 PMCID: PMC11394074 DOI: 10.3390/foods13172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Along the food production chain of animal, fish, and vegetable products, a huge amount of by-products are generated every year. Major nutritional, financial, and environmental advantages can be achieved by transforming them into functional ingredients for food formulation and fortification. In this review, we investigated various conventional and emerging treatments recently employed to obtain functional ingredients rich in proteins, fibers, and bioactive compounds from vegetables, fish, meat, and dairy by-products. The optimal enrichment level in food as well as the nutritional, techno-functional, and sensory properties of the final food were also discussed. Novel technologies such as ultrasounds, microwaves, and high pressure have been successfully adopted to enhance the extraction of target compounds. The functional ingredients, added both in liquid or powder form, were able to improve the nutritional quality and antioxidant potential of food, although high levels of fortification may cause undesired changes in texture and flavor. This review provides important considerations for further industrial scale-up.
Collapse
Affiliation(s)
- Helen Stephanie Ofei Darko
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lama Ismaiel
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Benedetta Fanesi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
5
|
Tachie CYE, Onuh JO, Aryee ANA. Nutritional and potential health benefits of fermented food proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1223-1233. [PMID: 37740932 DOI: 10.1002/jsfa.13001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Protein fermentation continues to gain popularity as a result of several factors, including the cost-effectiveness of the process and the positive correlation of fermented protein consumption, with a reduced risk of developing diet-related diseases such as diabetes and cardiovascular disorders, as well as their enhanced nutritional and techno-functional properties. Nonetheless, the nutritional and health benefits of food protein fermentation such as enhanced nutrient bioavailability, reduced antinutritional factors (ANFs) and enriched bioactive peptides (BAPs) are often overlooked. The present study reviewed recent work on the influence of protein fermentation on nutrition and health. In total, 322 eligible studies were identified on the Scopus and Google Scholar databases out of which 69 studies were evaluated based on our inclusion criteria. RESULTS Fermented protein ingredients and products show reduced ANF content, enhanced digestibility and bioavailability, and increased antioxidant and other biological activities, such as probiotic, prebiotic, angiotensin-converting enzyme inhibitory and antihypertensive properties. In addition, co-products in protein fermentation such as BAPs possess and could contribute additional sensory and flavor properties, degrade toxins, and reduce allergens in foods. CONCLUSION Thus, fermentation is not only a method for food preservation, but also serves as a means for producing functional food products for consumer health promotion and nutrition enrichment. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christabel Y E Tachie
- Delaware State University, College of Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, Dover, DE, USA
| | - John O Onuh
- Department of Food and Nutritional Sciences, College of Agriculture, Environment and Nutrition Science, Tuskegee University, Tuskegee, AL, USA
| | - Alberta N A Aryee
- Delaware State University, College of Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, Dover, DE, USA
| |
Collapse
|
6
|
Khalifa A, Ibrahim HIM, Sheikh A, Khalil HE. Attenuation of Immunogenicity in MOG-Induced Oligodendrocytes by the Probiotic Bacterium Lactococcus Sp. PO3. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1731. [PMID: 37893449 PMCID: PMC10608413 DOI: 10.3390/medicina59101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Milk is healthy and includes several vital nutrients and microbiomes. Probiotics in milk and their derivatives modulate the immune system, fight inflammation, and protect against numerous diseases. The present study aimed to isolate novel bacterial species with probiotic potential for neuroinflammation. Materials and Methods: Six milk samples were collected from lactating dairy cows. Bacterial isolates were obtained using standard methods and were evaluated based on probiotic characteristics such as the catalase test, hemolysis, acid/bile tolerance, cell adhesion, and hydrophobicity, as well as in vitro screening. Results: Nine morphologically diverse bacterial isolates were found in six different types of cow's milk. Among the isolates, PO3 displayed probiotic characteristics. PO3 was a Gram-positive rod cell that grew in an acidic (pH-2) salty medium containing bile salt and salinity (8% NaCl). PO3 also exhibited substantial hydrophobicity and cell adhesion. The sequencing comparison of the 16S rRNA genes revealed that PO3 was Lactococcus raffinolactis with a similarity score of 99.3%. Furthermore, PO3 was assessed for its neuroanti-inflammatory activity on human oligodendrocyte (HOG) cell lines using four different neuroimmune markers: signal transducer and activator of transcription (STAT-3), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and GLAC in HOG cell lines induced by MOG. Unlike the rest of the evaluated neuroimmune markers, STAT-3 levels were elevated in the MOG-treated HOG cell lines compared to the untreated ones. The expression level of STAT-3 was attenuated in both PO3-MOG-treated and only PO3-treated cell lines. On the contrary, in PO3-treated cell lines, MBP, GFAP, and GLAC were significantly expressed at higher levels when compared with the MOG-treated cell lines. Conclusions: The findings reported in this article are to be used as a foundation for further in vivo research in order to pave the way for the possible use of probiotics in the treatment of neuroinflammatory diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|