1
|
Sari TP, Dhamane AH, Pawar K, Bajaj M, Badgujar PC, Tarafdar A, Bodana V, Pareek S. High-pressure microfluidisation positively impacts structural properties and improves functional characteristics of almond proteins obtained from almond meal. Food Chem 2024; 448:139084. [PMID: 38569403 DOI: 10.1016/j.foodchem.2024.139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Almond protein isolate (API) obtained from almond meal was processed using dynamic high-pressure microfluidisation (0, 40, 80, 120, and 160 MPa pressure; single pass). Microfluidisation caused significant reductions in the particle size and increased absolute zeta potential. SDS-PAGE analysis indicated reduction in band intensity and the complete disappearance of bands beyond 80 MPa. Structural analysis (by circular dichroism, UV-Vis, and intrinsic-fluorescence spectra) of the API revealed disaggregation (up to 80 MPa) and then re-aggregation beyond 80 MPa. Significant increments in protein digestibility (1.16-fold) and the protein digestibility corrected amino acid score (PDCAAS; 1.15-fold) were observed for the API (80 MPa) than control. Furthermore, significant improvements (P < 0.05) in the functional properties were observed, viz., the antioxidant activity, protein solubility, and emulsifying properties. Overall, the results revealed that moderate microfluidisation treatment (80 MPa) is an effective and sustainable technique for enhancing physico-chemical and functional attributes of API, thus potentially enabling its functional food/nutraceuticals application.
Collapse
Affiliation(s)
- T P Sari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Amresh H Dhamane
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Kamlesh Pawar
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi NCR 201 314, India
| | - Mudit Bajaj
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Vikrant Bodana
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| |
Collapse
|
2
|
Jiménez-Pulido IJ, Rico D, De Luis D, Martín-Diana AB. Combined Strategy Using High Hydrostatic Pressure, Temperature and Enzymatic Hydrolysis for Development of Fibre-Rich Ingredients from Oat and Wheat By-Products. Foods 2024; 13:378. [PMID: 38338514 PMCID: PMC10855855 DOI: 10.3390/foods13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Wheat bran (WB) and oat hull (OH) are two interesting undervalued cereal processing sources rich in total dietary fibre (TDF) and other associated bioactive compounds, such as β-glucans and polyphenols. The aim of this study was to optimise a combination chemical (enzymes) and physical (high hydrostatic pressure-temperature) strategies to increase the bioaccessibility of bioactive compounds naturally bound to the bran and hull outer layers. WB and OH were hydrolysed using food-grade enzymes (UltraFloXL and Viscoferm, for WB and OH, respectively) in combination with HPP at different temperatures (40, 50, 60 and 70 °C) and hydrolysis either before or after HPP. Proximal composition, phytic acid, β-glucans, total phenolics (TPs) and total antioxidant activity (TAC) were evaluated to select the processing conditions for optimal nutritional and bioactive properties of the final ingredients. The application of the hydrolysis step after the HPP treatment resulted in lower phytic acid levels in both matrices (WB and OH). On the other hand, the release of β-glucan was more effective at the highest temperature (70 °C) used during pressurisation. After the treatment, the TP content ranged from 756.47 to 1395.27 µmol GAE 100 g-1 in WB, and OH showed values from 566.91 to 930.45 µmol GAE 100 g-1. An interaction effect between the temperature and hydrolysis timing (applied before or after HPP) was observed in the case of OH. Hydrolysis applied before HPP was more efficient in releasing OH TPs at lower HPP temperatures (40-50 °C); meanwhile, at higher HPP temperatures (60-70 °C), hydrolysis yielded higher TP values when applied after HPP. This effect was not observed in WB, where the hydrolysis was more effective before HPP. The TP results were significantly correlated with the TAC values. The results showed that the application of optimal process conditions (hydrolysis before HPP at 60 or 70 °C for WB; hydrolysis after HPP at 70 °C for OH) can increase the biological value of the final ingredients obtained.
Collapse
Affiliation(s)
- Iván Jesús Jiménez-Pulido
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (I.J.J.-P.); (A.B.M.-D.)
| | - Daniel Rico
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (I.J.J.-P.); (A.B.M.-D.)
| | - Daniel De Luis
- Endocrinology and Nutrition Research Centre, Medicine School, Service of Endocrinology and Nutrition, Universitary Clinic Hospital of Valladolid, University of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain;
| | - Ana Belén Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (I.J.J.-P.); (A.B.M.-D.)
| |
Collapse
|
3
|
Ambrosi VA, Guidi SM, Primrose DM, Gonzalez CB, Polenta GA. Assessment of the Efficiency of Technological Processes to Modify Whey Protein Antigenicity. Foods 2023; 12:3361. [PMID: 37761071 PMCID: PMC10528868 DOI: 10.3390/foods12183361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 09/29/2023] Open
Abstract
Whey is a by-product that represents a cheap source of protein with a high nutritional value, often used to improve food quality. When used as a raw material to produce hypoallergenic infant formulas (HIF), a processing step able to decrease the allergenic potential is required to guarantee their safe use for this purpose. In the present paper, thermal treatments, high hydrostatic pressure (HHP), and enzymatic hydrolysis (EH) were assessed to decrease the antigenicity of whey protein solutions (WPC). For monitoring purposes, a competitive ELISA method, able to detect the major and most allergenic whey protein β-lactoglobulin (BLG), was developed as a first step to evaluate the efficiency of the processes. Results showed that EH together with HHP was the most effective combination to reduce WPC antigenicity. The evaluation method proved useful to monitor the processes and to be employed in the quality control of the final product, to guarantee the efficiency, and in protein antigenicity reduction.
Collapse
Affiliation(s)
- Vanina Andrea Ambrosi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, CC 25, Castelar CP 1712, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD, INTA, CC 25, Castelar CP 1712, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 954, Buenos Aires C1113AAD, Argentina
| | - Silvina Mabel Guidi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, CC 25, Castelar CP 1712, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD, INTA, CC 25, Castelar CP 1712, Argentina
- Escuela Superior de Ingeniería, Informática y Ciencias Agroalimentarias, Universidad de Morón, Cabildo 134, Morón B1708WAB, Argentina
| | - Debora Marina Primrose
- Escuela Superior de Ingeniería, Informática y Ciencias Agroalimentarias, Universidad de Morón, Cabildo 134, Morón B1708WAB, Argentina
| | - Claudia Beatriz Gonzalez
- National Council of Science and Technology (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Gustavo Alberto Polenta
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, CC 25, Castelar CP 1712, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD, INTA, CC 25, Castelar CP 1712, Argentina
- Instituto de Biotecnología, Universidad Nacional de Hurlingham (UNAHUR), Av Vergara 2222, Hurlingham CP 1688, Argentina
| |
Collapse
|
4
|
Yang J, Lee SK, Kim YS, Suh HJ, Ahn Y. Preparation of Hypoallergenic Whey Protein Hydrolysate by a Mixture of Alcalase and Prozyme and Evaluation of Its Digestibility and Immunoregulatory Properties. Food Sci Anim Resour 2023; 43:594-611. [PMID: 37484001 PMCID: PMC10359843 DOI: 10.5851/kosfa.2023.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Whey protein (WP) has nutritional value, but the presence of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) cause allergic reactions. In this study, hypoallergenic whey protein hydrolyate (HWPH) was prepared by decomposing β-LG and α-LA of WP using exo- and endo-type proteases. The enzyme mixing ratio and reaction conditions were optimized using response surface methodology (RSM). Degradation of α-LA and β-LG was confirmed through gel electrophoresis, and digestion, and absorption rate, and immunostimulatory response were measured using in vitro and in vivo systems. Through RSM analysis, the optimal hydrolysis conditions for degradation of α-LA and β-LG included a 1:1 mixture of Alcalase and Prozyme reacted for 10 h at a 1.0% enzyme concentration relative to substrate. The molecular weight of HWPH was <5 kDa, and leucine was the prominent free amino acid. Both in vitro and in vivo tests showed that digestibility and intestinal permeability were higher in HWPH than in WP. In BALB/c mice, as compared to WP, HWPH reduced allergic reactions by inducing elevated Type 1/Type 2 helper T cell ratio in the blood, splenocytes, and small intestine. Thus, HWPH may be utilized in a variety of low allergenicity products intended for infants, adults, and the elderly.
Collapse
Affiliation(s)
- Jiyeon Yang
- Department of Integrated Biomedical and
Life Science, Graduate School, Korea University, Seoul 02841,
Korea
- Maeil Innovation Center, Maeil Dairies
Co., Ltd., Pyeongtaek 17714, Korea
| | - Se Kyung Lee
- Department of Integrated Biomedical and
Life Science, Graduate School, Korea University, Seoul 02841,
Korea
| | - Young Suk Kim
- Department of Food and Nutrition, Ansan
University, Ansan 15328, Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and
Life Science, Graduate School, Korea University, Seoul 02841,
Korea
- Transdisciplinary Major in Learning Health
Systems, Department of Healthcare Sciences, Graduate School, Korea
University, Seoul 02841, Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and
Life Science, Graduate School, Korea University, Seoul 02841,
Korea
| |
Collapse
|
5
|
Sheng Y, Wang WY, Wu MF, Wang YM, Zhu WY, Chi CF, Wang B. Eighteen Novel Bioactive Peptides from Monkfish ( Lophius litulon) Swim Bladders: Production, Identification, Antioxidant Activity, and Stability. Mar Drugs 2023; 21:md21030169. [PMID: 36976218 PMCID: PMC10054418 DOI: 10.3390/md21030169] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
In the study, papain was chosen from five proteases to hydrolyze proteins of monkfish swim bladders for effectively utilizing monkfish (Lophius litulon) processing byproducts, and the hydrolysis conditions of papain were optimized as hydrolysis temperature of 65 °C, pH 7.5, enzyme dose 2.5% and time 5 h using single-factor and orthogonal experiments. Eighteen peptides were purified from the swim bladder hydrolysate of monkfish by ultrafiltration and gel permeation chromatography methods and identified as YDYD, QDYD, AGPAS, GPGPHGPSGP, GPK, HRE, GRW, ARW, GPTE, DDGGK, IGPAS, AKPAT, YPAGP, DPT, FPGPT, GPGPT, GPT and DPAGP, respectively. Among eighteen peptides, GRW and ARW showed significant DPPH· scavenging activities with EC50 values of 1.053 ± 0.003 and 0.773 ± 0.003 mg/mL, respectively; YDYD, QDYD, GRW, ARW and YPAGP revealed significantly HO· scavenging activities with EC50 values of 0.150 ± 0.060, 0.177 ± 0.035, 0.201 ± 0.013, 0.183 ± 0.0016 and 0.190 ± 0.010 mg/mL, respectively; YDYD, QDYD, ARW, DDGGK and YPAGP have significantly O2-· scavenging capability with EC50 values of 0.126 ± 0.0005, 0.112 ± 0.0028, 0.127 ± 0.0002, 0.128 ± 0.0018 and 0.107 ± 0.0002 mg/mL, respectively; and YDYD, QDYD and YPAGP showed strong ABTS+· scavenging ability with EC50 values of 3.197 ± 0.036, 2.337 ± 0.016 and 3.839 ± 0.102 mg/mL, respectively. YDYD, ARW and DDGGK displayed the remarkable ability of lipid peroxidation inhibition and Ferric-reducing antioxidant properties. Moreover, YDYD and ARW can protect Plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, eighteen isolated peptides had high stability under temperatures ranging from 25-100 °C; YDYD, QDYD, GRW and ARW were more sensitive to alkali treatment, but DDGGK and YPAGP were more sensitive to acid treatment; and YDYD showed strong stability treated with simulated GI digestion. Therefore, the prepared antioxidant peptides, especially YDYD, QDYD, GRW, ARW, DDGGK and YPAGP from monkfish swim bladders could serve as functional components applied in health-promoting products because of their high-antioxidant functions.
Collapse
Affiliation(s)
- Yan Sheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wan-Yi Wang
- National and Provincial Joint Laboratory of Exploration, Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ming-Feng Wu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wang-Yu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan 316021, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration, Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|