Ameen S. Highly Dense TiO
2 Nanorods as Potential Electrode Material for Electrochemical Detection of Multiple Heavy Metal Ions in Aqueous Medium.
MICROMACHINES 2025;
16:275. [PMID:
40141886 PMCID:
PMC11946551 DOI:
10.3390/mi16030275]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
This study describes the direct deposition of extremely dense TiO2 nanorods (NRs) on an ITO substrate for the improved detection of heavy metal ions (HMIs). A facile hydrothermal method was employed to synthesize TiO2 NRs on the ITO substrate at ~130 °C. Synthesized TiO2 NRs were analyzed for morphological, structural, and electrochemical properties. As an electrode material, TiO2 NRs were used for the simultaneous detection of three HMIs (i.e., Cr3+, Cu2+, and Hg2+), which showed a remarkably high sensitivity of ~92.2 µA.mM-1.cm-2 for the Cu2+ ion. Relatively low sensitivities of ~15.6 µA.mM-1.cm-2 and ~19.67 µA.mM-1.cm-2 were recorded for the Cr3+ and Hg2+ ions, respectively. The fabricated TiO2 NR-based HMI sensor showed an effective dynamic linear detection range with low LOD values of ~21.7 mM, 37 mM, and ~ 28.5 mM for Cr3+, Cu2+, and Hg2+, respectively. The TiO2 NR-based HMI sensor exhibited efficient charge transfer over the electrode toward the trace detection of Cr3+, Cu2+, and Hg2+. Moreover, the reliability of the TiO2 NR-based HMI sensor was assessed, which exhibited a promising stability of 30 days. The obtained results indicate that TiO2 NRs grown on an ITO substrate are a promising electrode material for detecting hazardous Cr3+, Cu2+, and Hg2+ and might eventually be commercialized in the near future.
Collapse