1
|
Dissanayake IH, Tabassum W, Alsherbiny M, Chang D, Li CG, Bhuyan DJ. Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: A comprehensive review. Food Res Int 2025; 209:116283. [PMID: 40253191 DOI: 10.1016/j.foodres.2025.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/21/2025]
Abstract
Fruits and vegetables (FVs) are rich sources of macro and micro-nutrients crucial for a healthy diet. In addition to these nutrients, FVs also contain fibre and phytochemicals known for their antioxidant properties. Despite the growing evidence of the disease-preventive role of antioxidants in FVs, their bioavailability and bioaccessibility vary significantly and have not been adequately explored. Lactic acid bacterial (LAB) fermentation is considered the most appropriate and accessible biotechnological approach to maintain and enhance the safety, nutritional, sensory and shelf-life properties of perishable foods such as FVs. This review critically assesses how LAB fermentation could be utilised as a promising biotransformation strategy to enhance the bioavailability of antioxidants in FVs. Furthermore, it discusses the potential use of uniquely nutritious Australian native fruits as suitable candidates for LAB fermentation. Further research is essential to identify the beneficial properties of bioactive compounds and effective LAB-based biotransformation strategies to improve the bioavailability and bioaccessibility of antioxidants in FVs.
Collapse
Affiliation(s)
| | - Wahida Tabassum
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Muhammad Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Freedman Foundation Metabolomics Facility, Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
Uzun DE, Ceyhan T, Tomas M, Capanoglu E. Recent advances in improving anthocyanin stability in black carrots. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 40080445 DOI: 10.1080/10408398.2025.2469774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
This review focuses on the methods of enhancing the stability of black carrot anthocyanins, which are susceptible to degradation due to temperature, pH, light, and oxygen. These anthocyanins are valued for their health benefits and blue-violet color, but their instability limits their application in the food industry. It is hypothesized that implementing advanced stabilization techniques can significantly improve the stability and usability of black carrot anthocyanins. Key methods to improve anthocyanin stability, including encapsulation, co-pigmentation, and acylation, are comprehensively reviewed. Encapsulation techniques such as spray drying, freeze drying, and liposomes have shown effectiveness in protecting anthocyanins during food processing and storage. Co-pigmentation with non-anthocyanin phenolics and using whey proteins significantly enhance thermal and pH stability, thereby improving color retention. Additionally, innovative strategies like genetic modification and nanoencapsulation have demonstrated potential in further stabilizing anthocyanins by enhancing their structural resilience and bioavailability. These innovative approaches represent a significant advancement in the ability to maintain the integrity of black carrot anthocyanins. Advanced techniques for preserving the functional properties and nutritional benefits of black carrot anthocyanins facilitate broader use in health-oriented food products. Combining these modern methods is essential for optimal stability, and further research is needed to optimize these techniques.
Collapse
Affiliation(s)
- Damla Ezgi Uzun
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Tugce Ceyhan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
- Department of Food Engineering, Faculty of Engineering, Istanbul Aydın University, Küçükçekmece, Istanbul, Türkiye
| | - Merve Tomas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
3
|
Mu Y, Zeng C, Ni Y, Zhang S, Yang J, Feng Y. Comparative analysis of physicochemical properties, antioxidant activities, and metabolomic profiles in daylily-supplemented craft beer fermented with different Saccharomyces strains. Food Chem X 2025; 26:102326. [PMID: 40115499 PMCID: PMC11923835 DOI: 10.1016/j.fochx.2025.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
This study investigated the use of daylily as a novel adjunct in craft beer production with four Saccharomyces yeast strains. The addition of daylily powder and yeast selection significantly influenced the physicochemical properties, antioxidant activity, and overall metabolome of the beers. Yeast strains exhibited variations in color, alcohol content, phenolic and flavonoid levels, and antioxidant capacity. Metabolomic analysis revealed differences in lipid, amino acid, tannin, and fatty acid synthesis between strains. Volatile profiles also differed markedly in esters, terpenes, higher alcohols, acids, and aldehydes. While 90 % of metabolites were conserved, key differences reflected distinct metabolic regulation among strains. These findings highlight the potential of daylily as a flavorful and bioactive beer ingredient, and emphasize the importance of targeted yeast selection for optimizing beer quality and metabolome. This work provides a practical framework for brewers to develop innovative beers with enhanced functional properties and specialized flavor profiles.
Collapse
Affiliation(s)
- Yuwen Mu
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing, Lanzhou, Gansu, 730070, China
| | - Chaozhen Zeng
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Yulong Ni
- Shanxi Binghua Food Technology Co., Ltd., Datong, Shanxi, 037305, China
| | - Shiyu Zhang
- Datong Sanli Group Agriculture Co., Ltd., Datong, Shanxi, 037399, China
| | - Jianbin Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuqin Feng
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| |
Collapse
|
4
|
Huang R, Xia S, Gong S, Wang J, Zhang W, Zhong F, Lin Q, Deng J, Li W. Enhancing sensitivity and stability of natural pigments in pH-responsive freshness indicators: A review. Food Chem 2025; 463:141357. [PMID: 39306990 DOI: 10.1016/j.foodchem.2024.141357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 11/14/2024]
Abstract
Natural pigments are an indicator component in the freshness indicator, which is advantageous due to their safety, renewability, and low cost. However, freshness indicator with natural pigments as pH indicators has the problems of low stability and the color rendering domain could not effectively cover the shelf life of food. This paper describes the types and structures of natural pigments commonly used in freshness indicators and their color change mechanisms under different pH conditions. Also, the preparation methods of natural pigments freshness indicators are reviewed. Based on the current limitations and shortcomings faced by natural pigments freshness indicators, this paper highlights optimization strategies to enhance their sensitivity and stability, including modification, co-pigmentation, natural pigments mixing, encapsulation, and metal-ion complexation. The exploitation of these optimization strategies can help develop natural pigment-based intelligent packaging with superior performance to meet the food industry's needs for quality and safety monitoring.
Collapse
Affiliation(s)
- Rihua Huang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Suxuan Xia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuaikun Gong
- School of Food Science and Technology, Hunan Agricultural University, Changsha 410005, China
| | - Jingjing Wang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wei Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
5
|
Seddiek AS, Chen K, Zhou F, Esther MM, Elbarbary A, Golshany H, Uriho A, Liang L. Whey Protein Hydrogels and Emulsion Gels with Anthocyanins and/or Goji Oil: Formation, Characterization and In Vitro Digestion Behavior. Antioxidants (Basel) 2025; 14:60. [PMID: 39857394 PMCID: PMC11760487 DOI: 10.3390/antiox14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion of blueberry extract (BE) in the protein matrix. Heat-denatured WPI (hWPI) particles and emulsions were characterized in terms of size distribution, ζ-potential, interfacial protein, and anthocyanin partition. The inclusion of anthocyanins-rich blueberry extract led to the aggregation of hWPI particles, but it also increased the interfacial protein of 10% goji oil emulsions to 20% and decreased their size distribution to 120 and 325 nm. WPI hydrogels and emulsion gels were analyzed in terms of their water-holding capacity, which decreased from 98% to 82% with the addition of blueberry extract and goji oil. Syneresis, rheological, and morphological characteristics were also analyzed. The gelation time of hWPI particles and emulsions was shortened from 24 h to 12 h when incorporating blueberry extract to form a dense network. The network was the most homogeneous and densest in the presence of 3% blueberry extract and 5% goji oil. The co-inclusion of blueberry extract and goji oil increased the syneresis during the freeze-thaw cycles, with the values rising from 13% to 36% for 5% BE hydrogel and BE-containing emulsion gels after the first cycle. All WPI hydrogels and emulsion gels exhibit predominantly elastic behavior. Moreover, anthocyanin release, antioxidant activity, and the fatty acid composition profile were also analyzed during in vitro digestion. Soluble and free anthocyanins in the digested medium were reduced with the goji oil content but increased with the blueberry extract content. The stability of polyunsaturated fatty acids in the digested medium was improved by the addition of blueberry extract. The antioxidant activity of the digested medium increased with the content of blueberry extract but decreased with the content of goji oil. The ABTS∙+ scavenging capacities decreased from 63% to 49% by increasing the content of GO from 0% to 10% and they increased from 48% to 57% for 5% BE and 10% GO emulsion gels as the BE content increased from 0% to 5% after 6 h of digestion. The data gathered should provide valuable insights for future efforts to co-encapsulate hydrophilic and hydrophobic agents, thereby enhancing their stability, bioavailability, and functional properties for potential applications in food industries.
Collapse
Affiliation(s)
- Abdullah S. Seddiek
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Kaiwen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fanlin Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Muhindo Mwizerwa Esther
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Abdelaziz Elbarbary
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Dairy Science Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Angelo Uriho
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (A.S.S.); (A.E.); (H.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Zang J, Xiao P, Liu Z, Liu Y, Zhang Q, Chen J, Yin Z. Preparation and characterization of W/O/W purple potato anthocyanin nanoparticles: Antioxidant effects and gut microbiota improvement in rats. J Food Sci 2024; 89:9901-9922. [PMID: 39437303 DOI: 10.1111/1750-3841.17473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Purple potato anthocyanins (PPAs) are recognized for their broad physiological activities, including significant antioxidant, antimicrobial, and gut microbiota-regulating effects. However, their limited bioavailability in biological systems restricts the full realization of these potentials. In order to improve the bioavailability of PPA, this paper established and optimized the preparation process of W/O/W purple potato anthocyanin nanoparticles (PPA-NPs). Based on the determination of the metabolites of PPA-NPs, in vivo experiments were conducted in rats to investigate the absorption and metabolism, antioxidant activity, and the impact on the intestinal microbiota of PPA-NPs. UPLC-Q-TOF-MSMS analysis showed that the absorption of anthocyanins was increased by 220.36% in rats gavaged with PPA-NPs compared to rats gavaged with PPA directly. Subsequent in vivo experiments revealed that PPA-NPs significantly bolster primary antioxidant markers, evidenced by elevated glutathione and superoxide dismutase levels and reduced malondialdehyde content. Moreover, PPA-NPs were found to positively alter the gut microbiome structure in aged rats, notably increasing the abundance of beneficial bacteria, such as Lactobacillus and Rothia, and improving microbial diversity. These findings suggest that W/O/W PPA-NPs markedly improve the bioavailability of PPAs, showcasing promising antioxidant properties and potential health benefits for gut health in vivo. Overall, this research presents a novel approach for developing nanodelivery systems aimed at enhancing the bioavailability of water-soluble substances.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Pinjian Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and engineering, Jiangxi Agricultural University, Nanchang, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Song W, Yuan Q, Xie Y, Wang Y, Deng D, Guo H. Formulation and characterization of nanocapsules loaded with roselle anthocyanins extract and enhancement of anthocyanins bioaccessibility. Food Chem 2024; 459:140446. [PMID: 39018620 DOI: 10.1016/j.foodchem.2024.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Hibiscus sabdariffa L. (roselle) is a medicinal and edible plant which rich in anthocyanins with potent antioxidant properties. To enhance the stability of roselle anthocyanins, they were encapsulated in nanocapsules composed of carboxymethyl chitosan (CMC), chitosan hydrochloride (CHC), and β-lactoglobulin (β-Lg). In vitro simulated digestion assays evaluated the impact of various core-to-wall ratios and β-Lg concentrations on the bioaccessibility of seven anthocyanins. Nanocapsules with a core-to-wall ratio of 1:2 and β-Lg at 10 mg/mL exhibited the highest encapsulation efficiency (EE). Cyanidin-3-glucoside had the highest EE, while cyanidin-3-sambubioside showed the outstanding retention rate. Furthermore, simulated digestion experiments combined with molecular docking revealed that peonidin-3-glucoside and petunidin-3-glucoside likely interact with and bind to the outer β-Lg layer of the nanocapsules, increasing their release during in vitro digestion. This study demonstrates that encapsulating roselle anthocyanins in CMC, CHC, and β-Lg nanocapsules significantly enhances their bioaccessibility.
Collapse
Affiliation(s)
- Wanhan Song
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qianhua Yuan
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yutong Xie
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ya Wang
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dazhang Deng
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Prevention and Treatment of Chronic Noncommunicable Diseases, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
8
|
Nosov AV, Fomenkov AA, Sidorov RA, Goriainov SV. Euonymus maximowiczianus aril-derived long-term suspension-cultured cells: Light and methyl jasmonate impact in the anthocyanin and VLCFA accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109293. [PMID: 39561682 DOI: 10.1016/j.plaphy.2024.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The genus Euonymus (L.) consists of shrubs and woody plants, distributed mainly in the Northern Hemisphere. Several hundred of secondary metabolites have been isolated from Euonymus spp. In addition, fatty oil was found in the fruits of some Euonymus spp., which accumulates not only in the seeds but also in the arils. This study presents the research of unique over ten-year-old suspension cell cultures of the endemic plant Euonymus maximoviczianus Prokh., obtained from the aril tissue of unripe capsules. The suspension cells retain the ability to form oil droplets containing neutral lipids. Both cells growing in the dark (Em-D culture) and cells growing in the light (Em-L culture) can synthesize very-long-chain fatty acids (VLCFAs) as well as cyanidin-3-O-hexoside, delphinidin-3-O-hexoside, and peonidin-3-O-hexoside. Here, we researched the VLCFA and anthocyanin accumulation dynamics during subcultivation, as well as the influence of methyl jasmonate (MeJA) and light on these processes. In the darkness, the formation of VLCFAs was more intense, while the biosynthesis of anthocyanins was significantly activated in the light. In Em-L cells, more than 76% of anthocyanins were represented by cyanidin-3-O-hexoside, and in Em-D cells delphinidin-3-O-hexoside was more actively synthesized (45%). MeJA substantially enhanced the accumulation of anthocyanins (especially in the light) and, surprisingly, the formation of VLCFAs in both Em-L and Em-D cell cultures. The possible competition between the biosynthetic pathways of VLCFAs and anthocyanins is discussed in connection with the commonality of the cytosolic pool of their precursor, malonyl-CoA.
Collapse
Affiliation(s)
- Alexander V Nosov
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia.
| | - Artem A Fomenkov
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia.
| | - Roman A Sidorov
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia.
| | - Sergei V Goriainov
- Laboratory of High-Resolution Mass Spectrometry and NMR Spectroscopy of the Scientific and Educational Center, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198, Moscow, Russia.
| |
Collapse
|
9
|
Zhang M, Huang Z, Jayavanth P, Luo Z, Zhou H, Huang C, Ou S, Liu F, Zheng J. Esterification of black bean anthocyanins with unsaturated oleic acid, and application characteristics of the product. Food Chem 2024; 448:139079. [PMID: 38520989 DOI: 10.1016/j.foodchem.2024.139079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Esterification of anthocyanins with saturated fatty acids have been widely investigated, while that with unsaturated fatty acids is little understood. In this study, crude extract (purity ∼ 35 %) of cyanidin-3-O-glucoside (C3G) from black bean seed coat was utilized as reaction substrate, and enzymatically acylated with unsaturated fatty acid (oleic acid). Optimization of various reaction parameters finally resulted in the highest acylation rate of 54.3 %. HPLC-MS/MS and NMR analyses elucidated the structure of cyanidin-3-O-glucoside-oleic acid ester (C3G-OA) to be cyanidin-3-O-(6″-octadecene)-glucoside. Introduction of oleic acid into C3G improved the lipophilicity, antioxidant ability, and antibacterial activity. Further, the color and substance stability analyses showed that the susceptibility of C3G and C3G-OA to different thermal, peroxidative, and illuminant treatments were highly pH dependent, which suggested individual application guidelines. Moreover, C3G-OA showed lower toxicity to normal cell (QSG-7701) and better inhibitory effect on the proliferation of HepG2 cells than C3G, which indicated its potential anti-tumor bioactivity.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China
| | - Zixin Huang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China
| | - Pallavi Jayavanth
- International College, Jinan University, 510632 Guangzhou, Guangdong, China
| | - Ziming Luo
- Zhongshan Riwei Food Company, LTD., 528400 Zhongshan, Guangdong, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China; Guangzhou College of Technology and Business, 510580 Guangzhou, Guangdong, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China.
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
10
|
Li F, Sun Q, Chen L, Zhang R, Zhang Z. Unlocking the health potential of anthocyanins: a structural insight into their varied biological effects. Crit Rev Food Sci Nutr 2024; 65:2134-2154. [PMID: 38494796 DOI: 10.1080/10408398.2024.2328176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Anthocyanins have become increasingly important to the food industry due to their colorant features and many health-promoting activities. Numerous studies have linked anthocyanins to antioxidant, anti-inflammatory, anticarcinogenic properties, as well as protection against heart disease, certain types of cancer, and a reduced risk of diabetes and cognitive disorders. Anthocyanins from various foods may exhibit distinct biological and health-promoting activities owing to their structural diversity. In this review, we have collected and tabulated the key information from various recent published studies focusing on investigating the chemical structure effect of anthocyanins on their stability, antioxidant activities, in vivo fate, and changes in the gut microbiome. This information should be valuable in comprehending the connection between the molecular structure and biological function of anthocyanins, with the potential to enhance their application as both colorants and functional compounds in the food industry.
Collapse
Affiliation(s)
- Fangfang Li
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruojie Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Zipei Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
11
|
Chen MM, Lu YS, Li BH, Wu Y, Yang SB, Liu B, Zhang Y. Development of a chitosan and whey protein-based, biodegradable, colorimetric/fluorescent dual-channel monitoring label for real-time sensing of shrimp freshness. Int J Biol Macromol 2024; 262:130203. [PMID: 38365147 DOI: 10.1016/j.ijbiomac.2024.130203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
To address the growing and urgent need for quick and accurate food spoilage detection systems as well as to reduce food resource wastage, recent research has focused on intelligent bio-labels using pH indicators. Accordingly, we developed a dual-channel intelligent label with colorimetric and fluorescent capabilities using black lycium anthocyanin (BLA) and 9,10-bis(2,2-dipyridylvinyl) anthracene (DSA4P) as colorimetric and fluorescent indicators within a composite film consisting of chitosan (Cs), whey protein (Wp), and sodium tripolyphosphate (STPP). The addition of STPP as a cross-linking agent significantly improved the hydrophobicity, mechanical properties, and thermal stability of the Cs/Wp composite films under low pH conditions. After the incorporation of BLA and DSA4P, the resulting dual-channel intelligent label (Cs/Wp/STPP/BLA/DSA4P) exhibited superior hydrophobicity, as indicated by a water contact angle of 78.03°. Additionally, it displayed enhanced mechanical properties, with a tensile strength (TS) of 3.04 MPa and an elongation at break (EAB) of 81.07 %, while maintaining a low transmittance of 28.48 % at 600 nm. After 25 days of burial in soil, the label was significantly degraded, which showcases its eco-friendly nature. Moreover, the label could visually detect color changes indicating volatile ammonia concentrations (25-25,000 ppm). The color of the label in daylight gradually shifted from brick-red to light-red, brownish-yellow, and finally light-green as the ammonia concentration increased. Correspondingly, its fluorescence transitioned from no fluorescence to green fluorescence with increasing ammonia concentration, gradually intensifying under 365-nm UV light. Furthermore, the label effectively monitored the freshness of shrimp stored at temperatures of 4 °C, 25 °C, and - 18 °C. Thus, the label developed in this study exhibits significant potential for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Yu-Song Lu
- School of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Bing-Hang Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Yuan Wu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Shan-Bin Yang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| | - Yan Zhang
- School of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
12
|
Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. FRONTIERS IN PLANT SCIENCE 2024; 15:1310634. [PMID: 38328707 PMCID: PMC10847539 DOI: 10.3389/fpls.2024.1310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.
Collapse
Affiliation(s)
- Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - RuiQiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ma Lingling
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | | | - YongWen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
13
|
Wang W, Jiang S, Zhao Y, Zhu G. Echinacoside: A promising active natural products and pharmacological agents. Pharmacol Res 2023; 197:106951. [PMID: 37804927 DOI: 10.1016/j.phrs.2023.106951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Echinacoside, a natural phenylethanoid glycoside, was discovered and isolated from the garden plant Echinacea angustifolia DC., belonging to the Compositae family, approximately sixty years ago. Extensive investigations have revealed that it possesses a wide array of pharmacologically beneficial activities for human health, particularly notable for its neuroprotective and anticancer activity. Several crucial concerns surfaced, encompassing the recognition of active metabolites that exhibited inadequate bioavailability in their prototype form, the establishment of precise molecular signal pathways or targets associated with the aforementioned effects of echinacoside, and the scarcity of dependable clinical trials. Hence, the question remains unanswered as to whether scientific research can effectively utilize this natural compound. To support future studies on this natural product, it is imperative to provide a systematic overview and insights into potential future prospects. The current review provides a comprehensive analysis of the existing knowledge on echinacoside, encompassing its wide distribution, structural diversity and metabolism, diverse therapeutic applications, and improvement of echinacoside bioavailability for its potential utilization.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
14
|
Kavela ETA, Szalóki-Dorkó L, Máté M. The Efficiency of Selected Green Solvents and Parameters for Polyphenol Extraction from Chokeberry ( Aronia melanocarpa (Michx)) Pomace. Foods 2023; 12:3639. [PMID: 37835292 PMCID: PMC10572178 DOI: 10.3390/foods12193639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Chokeberry pomace is a potential source of natural colourants, antimicrobial agents, and anti-senescence compounds due to its high polyphenols content. Therefore, this study assessed the efficiency of green solvents (50% ethanol, 50% glycerol, and 100% distilled water, all acidified with 1% citric acid or 1% formic acid) for anthocyanin and total phenolic content (TPC) extraction from lyophilised chokeberry pomace. Extraction was performed in a water bath at 40, 50, and 60 °C for 60 and 120 min, followed by ultrasonic treatment for 15 and 30 min. Based on the results, 50% ethanol + 1% citric acid yielded significantly higher total anthocyanin content in the case of both spectrometric and HPLC measurements (1783 ± 153 mg CGE/100 g DW and 879.5 mg/100 g DW) at 50 °C for 60 min. Citric acids seem more effective compared to formic acid. The highest values of TPC were obtained with 50% glycerol + 1% formic acid at 50 °C for 60 min (12,309 ± 759 mg GAE/100 g DW). This study provides evidence that a substantial quantity of polyphenols, which can potentially be used as a natural food additive, can be efficiently extracted with 50% ethanol + 1% citric acid or 50% glycerol at 50 °C for 60 min from chokeberry pomace.
Collapse
Affiliation(s)
| | - Lilla Szalóki-Dorkó
- Department of Fruits and Vegetables Processing Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi Street 29-43, H-1118 Budapest, Hungary; (E.T.A.K.); (M.M.)
| | | |
Collapse
|
15
|
Qiu Y, Cai C, Mo X, Zhao X, Wu L, Liu F, Li R, Liu C, Chen J, Tian M. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl. FRONTIERS IN PLANT SCIENCE 2023; 14:1220507. [PMID: 37680360 PMCID: PMC10481954 DOI: 10.3389/fpls.2023.1220507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Introduction Dendrobium nobile L. is a rare orchid plant with high medicinal and ornamentalvalue, and extremely few genetic species resources are remaining in nature. In the normal purple flower population, a type of population material with a white flower variation phenotype has been discovered, and through pigment component determination, flavonoids were preliminarily found to be the main reason for the variation. Methods This study mainly explored the different genes and metabolites at different flowering stages and analysed the flower color variation mechanism through transcriptome- and flavonoid-targeted metabolomics. The experimental materials consisted of two different flower color phenotypes, purple flower (PF) and white flower (WF), observed during three different periods. Results and discussion The results identified 1382, 2421 and 989 differentially expressed genes (DEGs) in the white flower variety compared with the purple flower variety at S1 (bud stage), S2 (chromogenic stage) and S3 (flowering stage), respectively. Among these, 27 genes enriched in the ko00941, ko00942, ko00943 and ko00944 pathways were screened as potential functional genes affecting flavonoid synthesis and flower color. Further analysis revealed that 15 genes are potential functional genes that lead to flavonoid changes and flower color variations. The metabolomics results at S3 found 129 differentially accumulated metabolites (DAMs), which included 8 anthocyanin metabolites, all of which (with the exception of delphinidin-3-o-(2'''-o-malonyl) sophoroside-5-o-glucoside) were found at lower amounts in the WF variety compared with the PF variety, indicating that a decrease in the anthocyanin content was the main reason for the inability to form purple flowers. Therefore, the changes in 19 flavone and 62 flavonol metabolites were considered the main reasons for the formation of white flowers. In this study, valuable materials responsible for flower color variation in D. nobile were identified and further analyzed the main pathways and potential genes affecting changes in flavonoids and the flower color. This study provides a material basis and theoretical support for the hybridization and molecular-assisted breeding of D. nobile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Huang W, Zhao X, Chai Z, Herrera-Balandrano DD, Li B, Yang Y, Lu S, Tu Z. Improving Blueberry Anthocyanins' Stability Using a Ferritin Nanocarrier. Molecules 2023; 28:5844. [PMID: 37570814 PMCID: PMC10421234 DOI: 10.3390/molecules28155844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Blueberries are fruits known for their high level of anthocyanins, which have high nutritional value and several biological properties. However, the chemical instability of anthocyanins is one of the major limitations of their application. The stability of blueberry anthocyanin extracts (BAEs) encapsulated in a ferritin nanocarrier was investigated in this study for several influencing parameters, including pH, temperature, UV-visible light, redox agents, and various metal ions. The outcomes supported the positive role of protein nanoparticles in enhancing the stability of blueberry anthocyanins by demonstrating that the stability of encapsulated BAE nanoparticles with ferritin carriers was significantly higher than that of free BAEs and a mixture of BAEs and ferritin carriers. This study provides an alternative approach for enhancing blueberry anthocyanin stability using ferritin nanocarrier encapsulation.
Collapse
Affiliation(s)
- Wuyang Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xingyu Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | | | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji 311899, China
| | - Shan Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhigang Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|