1
|
Shadrack SM, Wang Y, Mi S, Lu R, Zhu Y, Tang Z, McClements DJ, Cao C, Xu X, Li W, Yuan B. Enhancing bioavailability and functionality of plant peptides and proteins: A review of novel strategies for food and pharmaceutical applications. Food Chem 2025; 485:144440. [PMID: 40288337 DOI: 10.1016/j.foodchem.2025.144440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/29/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Plant-derived peptides and proteins are emerging as versatile bioactive ingredients in functional food and pharmaceutical sectors due to their diverse health benefits. However, their practical applications are often limited by poor bioavailability and functional instability. This review evaluates key determinants of plant peptide/protein bioactivity, including physicochemical properties, anti-nutritional components, food matrix interactions, and gastrointestinal digestion conditions. Strategies to enhance their functionality and bioavailability are systematically discussed, focusing on absorption enhancers, structural modifications, protease inhibitors, and colloidal delivery systems (e.g., liposomes, emulsions, nanoparticles). Recent advancements highlight targeted enzymatic hydrolysis and fermentation as effective methods to generate bioactive peptides with improved therapeutic properties. Additionally, physical/chemical modifications enhance stability against proteolysis and improve functional performance. Innovations in plant-derived protein-based delivery systems, such as nanoparticles, demonstrate promise in protecting bioactive compounds and optimizing bioavailability. Collectively, these approaches provide a roadmap for developing next-generation plant-protein products, addressing challenges in bioactivity retention and gastrointestinal absorption.
Collapse
Affiliation(s)
- Salumu Masuwa Shadrack
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yezhi Wang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shichao Mi
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ran Lu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yutong Zhu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Zheng Tang
- Nanjing Jianke Tongchuang Biotechnology Co., Ltd Nanjing, Jiangsu 210000, China
| | | | - Chongjiang Cao
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| | - Biao Yuan
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Chavda VP, Joshi D. Surface modified proteins and peptides for targeted drug delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 212:389-438. [PMID: 40122652 DOI: 10.1016/bs.pmbts.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Surface modification of proteins and peptides has emerged as a promising strategy to enhance their therapeutic efficacy and target specificity. This chapter delves into the various techniques employed to modify the surface properties of these biomolecules, including chemical conjugation, site-specific mutagenesis, and peptide synthesis. The focus is on strategies that improve drug delivery to specific target sites, such as tumor cells or inflamed tissues. By modifying surface properties, it is possible to enhance drug stability, reduce immunogenicity, and prolong circulation time. This chapter explores the latest advancements in this field and discusses the potential applications of surface-modified proteins and peptides in the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Disha Joshi
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Wang X, Cao Z, Su J, Ge X, Zhou Z. Oral barriers to food-derived active peptides and nano-delivery strategies. J Food Sci 2025; 90:e17672. [PMID: 39828408 DOI: 10.1111/1750-3841.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Food-derived bioactive peptides are a class of peptides from natural protein. It may have biological effects on the human body and play a significant role in protecting human physiological health and regulating physiological metabolism, such as lowering blood pressure, lowering cholesterol, antioxidant, antibacterial, regulating immune activity, and so on. However, most of the natural food-derived functional peptides need to overcome a variety of barriers in the body to enter the blood circulation system and target to specific tissues to generate physiological activity. During this process, the bioavailability of the functional peptides will be reduced. The nano-delivery system can offer the feasibility to overcome these obstacles and improve the stability and bioavailability of food-derived active peptides by nanoencapsulation. This work summarizes the application of food-derived bioactive peptides and the obstacles during the delivery pathway in vivo. Moreover, the different nano-delivery systems used for bioactive peptides and their application were summarized, which could provide ideas for oral delivery of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhiyong Zhou
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, P. R. China
| |
Collapse
|
4
|
Amiri H, Shabanpour B, Pourashouri P, Kashiri M. Preparation of functional supplement powder using nanoliposome-containing marine bioactive compounds. J Food Sci 2024; 89:8658-8672. [PMID: 39556492 DOI: 10.1111/1750-3841.17543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
The demand for marine bioactive compounds as therapeutic agents in supplements or functional foods has increased. However, their instability, bitter taste, and potential degradation during digestion have hindered their widespread use. To overcome these problems, a functional supplement powder was produced using the encapsulation technique of nanoliposomes containing shrimp lipid extract, fish oil (FO), and fish protein hydrolysate. Chitosan and whey protein concentrate (WPC) were used to coat the nanoliposomes in mono/bilayer and composite forms, followed by freeze-drying for 72 h. The physicochemical characteristics, nutritional, in vitro release, and sensory evaluation were investigated. The WPC-monolayer treatment exhibited the highest solubility (28.83 mg/100 g), encapsulation efficiency (97.67%), and polyunsaturated fatty acids (PUFAs). Although the mono/bilayer treatments of whey protein showed lower docosahexaenoic acid and eicosapentaenoic acid than FO, they presented a favorable amino acid profile. Compared to acidic stomach conditions, the release in the intestine was higher. Incorporating 1.5 g of the supplement powder per 100 g of milk can meet an individual's daily nutritional needs for essential amino acids and PUFAs. Therefore, encapsulating marine bioactive compounds in liposomal carriers could be a beneficial approach to their direct use as a nutritious powder.
Collapse
Affiliation(s)
- Hadis Amiri
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Bahare Shabanpour
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahboobeh Kashiri
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
5
|
Fernandes B, Oliveira MC, Marques AC, Dos Santos RG, Serrano C. Microencapsulation of Essential Oils and Oleoresins: Applications in Food Products. Foods 2024; 13:3873. [PMID: 39682947 DOI: 10.3390/foods13233873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Essential oils (EOs) and oleoresins (ORs) are plant-derived extracts that contain both volatile and non-volatile compounds used for flavoring, coloring, and preservation. In the food industry, they are increasingly used to replace synthetic additives, aligning with consumer demand for natural ingredients, by substituting artificial flavors, colorants, and preservatives. Microcapsules can be added to a vast range of foods and beverages, including bakery products, candies, meat products, and sauces, as well as active food packages. However, incorporating EOs and ORs into foods and beverages can be difficult due to their hydrophobic nature and poor stability when exposed to light, oxygen, moisture, and temperature. Microencapsulation techniques address these challenges by enhancing their stability during storage, protecting sensitive molecules from reacting in the food matrix, providing controlled release of the core ingredient, and improving dispersion in the medium. There is a lack of articles that research, develop, and optimize formulations of microencapsulated EOs and ORs to be incorporated into food products. Microencapsulated ORs are overlooked by the food industry, whilst presenting great potential as natural and more stable alternatives to synthetic flavors, colorants, and preservatives than the pure extract. This review explores the more common microencapsulation methods of EOs and ORs employed in the food industry, with spray drying being the most widely used at an industrial scale. New emerging techniques are explored, with a special focus on spray drying-based technologies. Categories of wall materials and encapsulated ingredients are presented, and their applications in the food and beverage industry are listed.
Collapse
Affiliation(s)
- Beatriz Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Rui Galhano Dos Santos
- CERENA, DEQ, Instituto Superior Técnico (IST), University of Lisbon, Av. Rovisco Pais, No. 1, 1049-001 Lisbon, Portugal
| | - Carmo Serrano
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food-Research Center (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
6
|
Gallegos-Tintoré S, May-Canché M, Chel-Guerrero L, Castellanos-Ruelas A, Betancur-Ancona D. Preservation by ionic gelation encapsulation of the antioxidant activity of protein hydrolysate derived from Lionfish ( Pterois volitans, L.) muscle proteins. Food Sci Biotechnol 2024; 33:2979-2987. [PMID: 39220316 PMCID: PMC11364726 DOI: 10.1007/s10068-024-01557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 09/04/2024] Open
Abstract
The ionic gelation for preserving the antioxidant activity of the protein hydrolysate from encapsulated lionfish (Pterois volitans, L.) muscle was evaluated. A 22 factorial design was used. The factors evaluated were sodium alginate concentration (1.75% and 3.5% w/v) and calcium chloride concentration (3% and 5% w/v). The response variables were encapsulation efficiency and preservation of antioxidant activity. The beads obtained were classified as microcapsules (2-3 mm) and were mostly spherical, with a weight ranging from 12 to 38 mg. Encapsulation efficiency ranged from 37 to 55.47%, while the preservation of antioxidant activity ranged from 43.3 to 64.5%. The best treatment for preserving the in vitro antioxidant activity of the protein hydrolysate was the one with 1.75% w/v sodium alginate and 3% w/v calcium chloride, which showed an encapsulation efficiency of 53.96%, preservation of antioxidant activity of 64.5%, and free radical scavenging (DPPH) of 22.73%.
Collapse
Affiliation(s)
- Santiago Gallegos-Tintoré
- Faculty of Chemical Engineering, Autonomous University of Yucatan, Chuburna de Hidalgo Inn, Periferico Nte. Km. 33.5, 97203 Mérida, Yucatán Mexico
| | - Marcos May-Canché
- Faculty of Chemical Engineering, Autonomous University of Yucatan, Chuburna de Hidalgo Inn, Periferico Nte. Km. 33.5, 97203 Mérida, Yucatán Mexico
| | - Luis Chel-Guerrero
- Faculty of Chemical Engineering, Autonomous University of Yucatan, Chuburna de Hidalgo Inn, Periferico Nte. Km. 33.5, 97203 Mérida, Yucatán Mexico
| | - Arturo Castellanos-Ruelas
- Faculty of Chemical Engineering, Autonomous University of Yucatan, Chuburna de Hidalgo Inn, Periferico Nte. Km. 33.5, 97203 Mérida, Yucatán Mexico
| | - David Betancur-Ancona
- Faculty of Chemical Engineering, Autonomous University of Yucatan, Chuburna de Hidalgo Inn, Periferico Nte. Km. 33.5, 97203 Mérida, Yucatán Mexico
| |
Collapse
|
7
|
Pérez-Gálvez R, Berraquero-García C, Ospina-Quiroga JL, Espejo-Carpio FJ, Almécija MC, Guadix A, García-Moreno PJ, Guadix EM. Influence of InVitro Digestion on Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Activity of Plant-Protein Hydrolysates Obtained from Agro-Industrial By-Products. Foods 2024; 13:2691. [PMID: 39272456 PMCID: PMC11394543 DOI: 10.3390/foods13172691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of simulated gastrointestinal digestion on the DPP-IV inhibitory activity of all the hydrolysates was evaluated. Overall, the lowest values of IC50 (1.02 ± 0.09 - 1.24 ± 0.19 mg protein/mL) were observed for the hydrolysates with a high proportion of short-chain [< 1 kDa] peptides (i.e., olive seed, sunflower seed, and lupin) or high content of proline (i.e., rapeseed). Contrarily, the IC50 of the pea and potato hydrolysates was significantly higher (1.50 ± 0.13 - 1.93 ± 0.13 mg protein/mL). In vitro digestion led to an increase in peptides <1 kDa for almost all hydrolysates (except olive and sunflower seed meals), which was noticeable for rapeseed, pea, and potato hydrolysates. Digestion did not significantly modify the DPP-IV inhibitory activity of olive, sunflower, rapeseed, and potato hydrolysates, whereas a significant decrease in IC50 value was obtained for pea hydrolysate and a significant increase in IC50 was obtained for lupin hydrolysate. Thus, this work shows the potential of agro-industrial by-products for the production of protein hydrolysates exhibiting DPP-IV inhibition.
Collapse
Affiliation(s)
- Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | | | | | - M Carmen Almécija
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Tonini S, Tlais AZA, Filannino P, Di Cagno R, Gobbetti M. Apple Blossom Agricultural Residues as a Sustainable Source of Bioactive Peptides through Microbial Fermentation Bioprocessing. Antioxidants (Basel) 2024; 13:837. [PMID: 39061905 PMCID: PMC11273824 DOI: 10.3390/antiox13070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored the impact of starter-assisted fermentation on apple blossoms to enhance their potential as a source of antioxidant and antifungal molecules. Fructobacillus fructosus PL22 and Wickerhamomyces anomalus GY1 were chosen as starters owing to their origin and promising ability to modify plant secondary metabolites. An initial assessment through microbiological and physicochemical analyses showed superior outcomes for starter-assisted fermentation compared to the spontaneous process. Enzymatic hydrolysis of proteins, primarily controlled by starters, orchestrated the generation of new low-molecular-weight peptides. W. anomalus GY1 also induced modifications in the phenolic profile, generating a diverse array of bioactive metabolites. These metabolic changes, particularly the release of potentially bioactive peptides, were associated with significant antioxidant activity and marked antifungal efficacy against three common mold species. Our results shed light on the potential of microbial starters to valorize agricultural wastes and convert them into a valuable resource for industry.
Collapse
Affiliation(s)
- Stefano Tonini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.T.); (R.D.C.); (M.G.)
| |
Collapse
|
9
|
Pérez-Pérez V, Jiménez-Martínez C, González-Escobar JL, Corzo-Ríos LJ. Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: trends and opportunities. Front Chem 2024; 12:1423500. [PMID: 39050374 PMCID: PMC11266027 DOI: 10.3389/fchem.2024.1423500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Bioactive peptides derived from plant sources have gained significant attention for their potential use in preventing and treating chronic degenerative diseases. However, the efficacy of these peptides depends on their bioaccessibility, bioavailability, and stability. Encapsulation is a promising strategy for improving the therapeutic use of these compounds. It enhances their stability, prolongs their shelf life, protects them from degradation during digestion, and enables better release control by improving their bioaccessibility and bioavailability. This review aims to analyze the impact of various factors related to peptide encapsulation on their stability and release to enhance their biological activity. To achieve this, it is necessary to determine the composition and physicochemical properties of the capsule, which are influenced by the wall materials, encapsulation technique, and operating conditions. Furthermore, for peptide encapsulation, their charge, size, and hydrophobicity must be considered. Recent research has focused on the advancement of novel encapsulation methodologies that permit the formation of uniform capsules in terms of size and shape. In addition, it explores novel wall materials, including polysaccharides derived from unconventional sources, that allow the precise regulation of the rate at which peptides are released into the intestine.
Collapse
Affiliation(s)
- Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jorge Luis González-Escobar
- Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, San Luis Potosí, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| |
Collapse
|
10
|
Berraquero-García C, Martínez-Sánchez L, Guadix EM, García-Moreno PJ. Encapsulation of Tenebrio molitor Hydrolysate with DPP-IV Inhibitory Activity by Electrospraying and Spray-Drying. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:840. [PMID: 38786796 PMCID: PMC11123797 DOI: 10.3390/nano14100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
This study investigates the encapsulation of Tenebrio molitor hydrolysate exhibiting DPP-IV inhibitory activity by spray-drying and electrospraying techniques. First, we optimized the feed formulation and processing conditions required to obtain nano-microcapsules by electrospraying when using Arabic gum as an encapsulating agent and pullulan and Tween 20 as additives. The optimum formulation was also dried by spray-drying, where the removal of the additives was also assayed. Morphology analysis reveals that electrosprayed capsules have a smaller size (1.2 ± 0.5 µm vs. 12.4 ± 8.7 µm) and greater uniformity compared to those obtained by spray-drying. Regarding the surface nitrogen content and DPP-IV inhibitory activity, our results show no significant difference between the electrosprayed capsules and spray-dried capsules containing additives (IC50 of ~1.5 mg protein/mL). Therefore, it was concluded that adding additives during spray-drying allows for a similar encapsulation efficiency and reduced degradation during processing, as achieved by electrospraying technique but providing higher productivity. On the other hand, spray-dried capsules without additives displayed a higher surface nitrogen content percentage, which was mainly due to the absence of Tween 20 in the feed formulation. Consequently, these capsules presented a higher IC50 value (IC50 of 1.99 ± 0.03 mg protein/mL) due to the potential degradation of surface-exposed peptides.
Collapse
Affiliation(s)
| | | | | | - Pedro J. García-Moreno
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (L.M.-S.); (E.M.G.)
| |
Collapse
|
11
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
12
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
13
|
González-Chavarría I, Roa FJ, Sandoval F, Muñoz-Flores C, Kappes T, Acosta J, Bertinat R, Altamirano C, Valenzuela A, Sánchez O, Fernández K, Toledo JR. Chitosan Microparticles Enhance the Intestinal Release and Immune Response of an Immune Stimulant Peptide in Oncorhynchus mykiss. Int J Mol Sci 2023; 24:14685. [PMID: 37834146 PMCID: PMC10572396 DOI: 10.3390/ijms241914685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1β, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1β, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Francisco J. Roa
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Felipe Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Carolina Muñoz-Flores
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Tomas Kappes
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Romina Bertinat
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile;
| | - Ariel Valenzuela
- Laboratory of Fish Culture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Oliberto Sánchez
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Katherina Fernández
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jorge R. Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| |
Collapse
|